Ligand binding to distinct states diverts aggregation of an amyloid-forming protein (original) (raw)
References
Sipe, J.D. et al. Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis. Amyloid17, 101–104 (2010). ArticleCASPubMed Google Scholar
Chiti, F. & Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem.75, 333–366 (2006). ArticleCASPubMed Google Scholar
Bernstein, S.L. et al. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nat. Chem.1, 326–331 (2009). ArticleCASPubMedPubMed Central Google Scholar
Necula, M., Kayed, R., Milton, S. & Glabe, C.G. Small molecule inhibitors of aggregation indicate that Aβ oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem.282, 10311–10324 (2007). ArticleCASPubMed Google Scholar
Gosal, W.S. et al. Competing pathways determine fibril morphology in the self-assembly of β2-microglobulin into amyloid. J. Mol. Biol.351, 850–864 (2005). ArticleCASPubMed Google Scholar
Carrell, R.W. Cell toxicity and conformational disease. Trends Cell Biol.15, 574–580 (2005). ArticleCASPubMed Google Scholar
Martins, I.C. et al. Lipids revert inert Aβ amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J.27, 224–233 (2008). ArticleCASPubMed Google Scholar
Lee, H.G. et al. Challenging the amyloid cascade hypothesis: Senile plaques and amyloid-β as protective adaptations to Alzheimer disease. Ann. NY Acad. Sci.1019, 1–4 (2004). ArticleCASPubMed Google Scholar
Porat, Y., Abramowitz, A. & Gazit, E. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des.67, 27–37 (2006). ArticleCASPubMed Google Scholar
Regazzoni, L. et al. A combined high-resolution mass spectrometric and in silico approach for the characterization of small ligands of β2-microglobulin. ChemMedChem5, 1015–1025 (2010). ArticleCASPubMed Google Scholar
Cohen, F.E. & Kelly, J.W. Therapeutic approaches to protein-misfolding diseases. Nature426, 905–909 (2003). ArticleCASPubMed Google Scholar
Conway, K.A., Rochet, J.C., Bieganski, R.M. & Lansbury, P.T. Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science294, 1346–1349 (2001). ArticleCASPubMed Google Scholar
Lendel, C. et al. On the mechanism of non-specific inhibitors of protein aggregation: Dissecting the interactions of α-synuclein with Congo red and lacmoid. Biochemistry48, 8322–8334 (2009). ArticleCASPubMed Google Scholar
McGovern, S.L., Caselli, E., Grigorieff, N. & Shoichet, B.K. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J. Med. Chem.45, 1712–1722 (2002). ArticleCASPubMed Google Scholar
Ladiwala, A.R., Dordick, J.S. & Tessier, P.M. Aromatic small molecules remodel toxic soluble oligomers of amyloid β through three independent pathways. J. Biol. Chem.286, 3209–3218 (2011). ArticleCASPubMed Google Scholar
Armstrong, A.H., Chen, J., McKoy, A.F. & Hecht, M.H. Mutations that replace aromatic side chains promote aggregation of the Alzheimer's Aβ peptide. Biochemistry50, 4058–4067 (2011). ArticleCASPubMedPubMed Central Google Scholar
Platt, G.W., Routledge, K.E., Homans, S.W. & Radford, S.E. Fibril growth kinetics reveal a region of β2-microglobulin important for nucleation and elongation of aggregation. J. Mol. Biol.378, 251–263 (2008). ArticleCASPubMedPubMed Central Google Scholar
Routledge, K.E., Tartaglia, G.G., Platt, G.W., Vendruscolo, M. & Radford, S.E. Competition between intra-molecular and inter-molecular interactions in an amyloid forming protein. J. Mol. Biol.389, 776–786 (2009). ArticleCASPubMedPubMed Central Google Scholar
Meng, F., Marek, P., Potter, K.J., Verchere, C.B. & Raleigh, D.P. Rifampicin does not prevent amyloid fibril formation by human islet amyloid polypeptide but does inhibit fibril thioflavin-T interactions: Implications for mechanistic studies of β-cell death. Biochemistry47, 6016–6024 (2008). ArticleCASPubMed Google Scholar
Lieu, V.H., Wu, J.W., Wang, S.S.S. & Wu, C.H. Inhibition of amyloid fibrillization of hen egg-white lysozymes by rifampicin and p-benzoquinone. Biotechnol. Prog.23, 698–706 (2007). ArticleCASPubMed Google Scholar
Li, J., Zhu, M., Rajamani, S., Uversky, V.N. & Fink, A.L. Rifampicin inhibits α-synuclein fibrillation and disaggregates fibrils. Chem. Biol.11, 1513–1521 (2004). ArticleCASPubMed Google Scholar
Tomiyama, T., Kaneko, H., Kataoka, K., Asano, S. & Endo, N. Rifampicin inhibits the toxicity of pre-aggregated amyloid peptides by binding to peptide fibrils and preventing amyloid-cell interaction. Biochem. J.322, 859–865 (1997). ArticleCASPubMedPubMed Central Google Scholar
Carazzone, C. et al. Sulfonated molecules that bind a partially structured species of β2-microglobulin also influence refolding and fibrillogenesis. Electrophoresis29, 1502–1510 (2008). ArticleCASPubMed Google Scholar
Smith, A.M., Jahn, T.R., Ashcroft, A.E. & Radford, S.E. Direct observation of oligomeric species formed in the early stages of amyloid fibril formation using electrospray ionisation mass spectrometry. J. Mol. Biol.364, 9–19 (2006). ArticleCASPubMed Google Scholar
Smith, D.P., Radford, S.E. & Ashcroft, A.E. Elongated oligomers in β2-microglobulin amyloid assembly revealed by ion mobility spectrometry-mass spectrometry. Proc. Natl. Acad. Sci. USA107, 6794–6798 (2010). ArticleCASPubMed Google Scholar
Armstrong, D.W., Schneiderheinze, J., Nair, U., Magid, L.J. & Butler, P.D. Self-association of rifamycin B: Possible effects on molecular recognition. J. Phys. Chem. B103, 4338–4341 (1999). ArticleCAS Google Scholar
Kayed, R. et al. Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J. Biol. Chem.284, 4230–4237 (2009). ArticleCASPubMedPubMed Central Google Scholar
O'Nuallain, B. & Wetzel, R. Conformational Abs recognizing a generic amyloid fibril epitope. Proc. Natl. Acad. Sci. USA99, 1485–1490 (2002). ArticleCASPubMed Google Scholar
Smith, D.P. et al. Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies. Eur. J. Mass Spectrom. (Chichester, Eng.)15, 113–130 (2009). ArticleCAS Google Scholar
Smith, D.P., Giles, K., Bateman, R.H., Radford, S.E. & Ashcroft, A.E. Monitoring copopulated conformational states during protein folding events using electrospray ionization-ion mobility spectrometry-mass spectrometry. J. Am. Soc. Mass Spectrom.18, 2180–2190 (2007). ArticleCASPubMedPubMed Central Google Scholar
Platt, G.W., McParland, V.J., Kalverda, A.P., Homans, S.W. & Radford, S.E. Dynamics in the unfolded state of β2-microglobulin studied by NMR. J. Mol. Biol.346, 279–294 (2005). ArticleCASPubMed Google Scholar
Tomiyama, T. et al. Rifampicin prevents the aggregation and neurotoxicity of Aβ protein in vitro. Biochem. Biophys. Res. Commun.204, 76–83 (1994). ArticleCASPubMed Google Scholar
Borysik, A.J., Radford, S.E. & Ashcroft, A.E. Co-populated conformational ensembles of β2-microglobulin uncovered quantitatively by electrospray ionisation mass spectroscopy. J. Biol. Chem.279, 27069–27077 (2004). ArticleCASPubMed Google Scholar
Smith, D.P., Jones, S., Serpell, L.C., Sunde, M. & Radford, S.E. A systematic investigation into the effect of protein destabilization on β2-microglobulin amyloid formation. J. Mol. Biol.330, 943–954 (2003). ArticleCASPubMed Google Scholar
Xue, W.F., Homans, S.W. & Radford, S.E. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc. Natl. Acad. Sci. USA105, 8926–8931 (2008). ArticleCASPubMed Google Scholar
Ladner, C.L. et al. Stacked sets of parallel, in-register beta-strands of β2-microglobulin in amyloid fibrils revealed by site-directed spin labeling and chemical labeling. J. Biol. Chem.285, 17137–17147 (2010). ArticleCASPubMedPubMed Central Google Scholar
Debelouchina, G.T., Platt, G.W., Bayro, M.J., Radford, S.E. & Griffin, R.G. Magic angle spinning NMR analysis of β2-microglobulin amyloid fibrils in two distinct morphologies. J. Am. Chem. Soc.132, 10414–10423 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gazit, E. A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J.16, 77–83 (2002). ArticleCASPubMed Google Scholar
Taniguchi, S. et al. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem.280, 7614–7623 (2005). ArticleCASPubMed Google Scholar
Ehrnhoefer, D.E. et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol.15, 558–566 (2008). ArticleCASPubMed Google Scholar
Bieschke, J. et al. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc. Natl. Acad. Sci. USA107, 7710–7715 (2010). ArticleCASPubMed Google Scholar
Ladiwala, A.R.A. et al. Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Aβ off-pathway conformers. J. Biol. Chem.285, 24228–24237 (2010). ArticleCASPubMedPubMed Central Google Scholar
Grabenauer, M., Wu, C., Soto, P., Shea, J.E. & Bowers, M.T. Oligomers of the prion protein fragment 106–126 are likely assembled from beta-hairpins in solution, and methionine oxidation inhibits assembly without altering the peptide's monomeric conformation. J. Am. Chem. Soc.132, 532–539 (2010). ArticleCASPubMed Google Scholar
Dupuis, N.F., Wu, C., Shea, J.E. & Bowers, M.T. Human islet amyloid polypeptide monomers form ordered beta-hairpins: A possible direct amyloidogenic precursor. J. Am. Chem. Soc.131, 18283–18292 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ashcroft, A.E. Mass spectrometry and the amyloid problem–how far can we go in the gas phase? J. Am. Soc. Mass Spectrom.21, 1087–1096 (2010). ArticleCASPubMed Google Scholar
Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science300, 486–489 (2003). ArticleCASPubMed Google Scholar
Laurén, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W. & Strittmatter, S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature457, 1128–1132 (2009). ArticlePubMedPubMed Central Google Scholar