Novel targets for Huntington's disease in an mTOR-independent autophagy pathway (original) (raw)
Rubinsztein, D.C., Gestwicki, J.E., Murphy, L.O. & Klionsky, D.J. Potential therapeutic applications of autophagy. Nat. Rev. Drug Discov.6, 304–312 (2007). ArticleCAS Google Scholar
Klionsky, D.J. & Emr, S.D. Autophagy as a regulated pathway of cellular degradation. Science290, 1717–1721 (2000). ArticleCAS Google Scholar
Rubinsztein, D.C. Lessons from animal models of Huntington's disease. Trends Genet.18, 202–209 (2002). ArticleCAS Google Scholar
Gafni, J. & Ellerby, L.M. Calpain activation in Huntington's disease. J. Neurosci.22, 4842–4849 (2002). ArticleCAS Google Scholar
Gafni, J. et al. Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. J. Biol. Chem.279, 20211–20220 (2004). ArticleCAS Google Scholar
Zeron, M.M. et al. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron33, 849–860 (2002). ArticleCAS Google Scholar
Tang, T.S. et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron39, 227–239 (2003). ArticleCAS Google Scholar
Ravikumar, B., Duden, R. & Rubinsztein, D.C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet.11, 1107–1117 (2002). ArticleCAS Google Scholar
Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet.36, 585–595 (2004). ArticleCAS Google Scholar
Sarkar, S., Davies, J.E., Huang, Z., Tunnacliffe, A. & Rubinsztein, D.C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J. Biol. Chem.282, 5641–5652 (2007). ArticleCAS Google Scholar
Sarkar, S. et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol.170, 1101–1111 (2005). ArticleCAS Google Scholar
Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat. Chem. Biol.3, 331–338 (2007). ArticleCAS Google Scholar
Shibata, M. et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem.281, 14474–14485 (2006). ArticleCAS Google Scholar
Webb, J.L., Ravikumar, B., Atkins, J., Skepper, J.N. & Rubinsztein, D.C. Alpha-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem.278, 25009–25013 (2003). ArticleCAS Google Scholar
Berger, Z. et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet.15, 433–442 (2006). ArticleCAS Google Scholar
Gutierrez, M.G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell119, 753–766 (2004). ArticleCAS Google Scholar
Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science306, 1037–1040 (2004). ArticleCAS Google Scholar
Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science307, 727–731 (2005). ArticleCAS Google Scholar
Sarbassov, D.D., Ali, S.M. & Sabatini, D.M. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol.17, 596–603 (2005). ArticleCAS Google Scholar
Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T. & Sulzer, D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science305, 1292–1295 (2004). ArticleCAS Google Scholar
Greenberg, D.A., Cooper, E.C. & Carpenter, C.L. Calcium channel 'agonist' BAY K 8644 inhibits calcium antagonist binding to brain and PC12 cell membranes. Brain Res.305, 365–368 (1984). ArticleCAS Google Scholar
Hockerman, G.H., Peterson, B.Z., Johnson, B.D. & Catterall, W.A. Molecular determinants of drug binding and action on L-type calcium channels. Annu. Rev. Pharmacol. Toxicol.37, 361–396 (1997). ArticleCAS Google Scholar
Mizushima, N. Methods for monitoring autophagy. Int. J. Biochem. Cell Biol.36, 2491–2502 (2004). ArticleCAS Google Scholar
Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J.19, 5720–5728 (2000). ArticleCAS Google Scholar
Osborne, N.N. Inhibition of cAMP production by alpha 2-adrenoceptor stimulation in rabbit retina. Brain Res.553, 84–88 (1991). ArticleCAS Google Scholar
Felsen, D. et al. Identification, localization and functional analysis of imidazoline and alpha adrenergic receptors in canine prostate. J. Pharmacol. Exp. Ther.268, 1063–1071 (1994). CASPubMed Google Scholar
Greney, H. et al. Coupling of I(1) imidazoline receptors to the cAMP pathway: studies with a highly selective ligand, benazoline. Mol. Pharmacol.57, 1142–1151 (2000). CASPubMed Google Scholar
Kopperud, R., Krakstad, C., Selheim, F. & Doskeland, S.O. cAMP effector mechanisms. Novel twists for an 'old' signaling system. FEBS Lett.546, 121–126 (2003). ArticleCAS Google Scholar
Enserink, J.M. et al. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat. Cell Biol.4, 901–906 (2002). ArticleCAS Google Scholar
Shi, G.X., Rehmann, H. & Andres, D.A. A novel cyclic AMP-dependent Epac-Rit signaling pathway contributes to PACAP38-mediated neuronal differentiation. Mol. Cell. Biol.26, 9136–9147 (2006). ArticleCAS Google Scholar
Ster, J. et al. Exchange protein activated by cAMP (Epac) mediates cAMP activation of p38 MAPK and modulation of Ca2+-dependent K+ channels in cerebellar neurons. Proc. Natl. Acad. Sci. USA104, 2519–2524 (2007). ArticleCAS Google Scholar
Qiao, J., Mei, F.C., Popov, V.L., Vergara, L.A. & Cheng, X. Cell cycle-dependent subcellular localization of exchange factor directly activated by cAMP. J. Biol. Chem.277, 26581–26586 (2002). ArticleCAS Google Scholar
vom Dorp, F. et al. Inhibition of phospholipase C-epsilon by Gi-coupled receptors. Cell. Signal.16, 921–928 (2004). ArticleCAS Google Scholar
Criollo, A. et al. Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ.14, 1029–1039 (2007). ArticleCAS Google Scholar
Schell, M.J., Erneux, C. & Irvine, R.F. Inositol 1,4,5-trisphosphate 3-kinase A associates with F-actin and dendritic spines via its N terminus. J. Biol. Chem.276, 37537–37546 (2001). ArticleCAS Google Scholar
Goll, D.E., Thompson, V.F., Li, H., Wei, W. & Cong, J. The calpain system. Physiol. Rev.83, 731–801 (2003). ArticleCAS Google Scholar
Hayashi, S., Horie, M. & Okada, Y. Ionic mechanism of minoxidil sulfate-induced shortening of action potential durations in guinea pig ventricular myocytes. J. Pharmacol. Exp. Ther.265, 1527–1533 (1993). CASPubMed Google Scholar
Yamamoto, A. et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct.23, 33–42 (1998). ArticleCAS Google Scholar
Ravikumar, B. et al. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet.37, 771–776 (2005). ArticleCAS Google Scholar
Gordon, P.B., Holen, I., Fosse, M., Rotnes, J.S. & Seglen, P.O. Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J. Biol. Chem.268, 26107–26112 (1993). CASPubMed Google Scholar
Sato-Kusubata, K., Yajima, Y. & Kawashima, S. Persistent activation of Gsalpha through limited proteolysis by calpain. Biochem. J.347, 733–740 (2000). ArticleCAS Google Scholar
Yousefi, S. et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol.8, 1124–1132 (2006). ArticleCAS Google Scholar
Jackson, G.R. et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron21, 633–642 (1998). ArticleCAS Google Scholar
Steffan, J.S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature413, 739–743 (2001). ArticleCAS Google Scholar
Butler, R. & Bates, G.P. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nat. Rev. Neurosci.7, 784–796 (2006). ArticleCAS Google Scholar
Hucho, T.B., Dina, O.A. & Levine, J.D. Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4(+) neuron-specific mechanism. J. Neurosci.25, 6119–6126 (2005). ArticleCAS Google Scholar
Budovskaya, Y.V., Stephan, J.S., Reggiori, F., Klionsky, D.J. & Herman, P.K. The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J. Biol. Chem.279, 20663–20671 (2004). ArticleCAS Google Scholar
Holen, I., Gordon, P.B., Stromhaug, P.E. & Seglen, P.O. Role of cAMP in the regulation of hepatocytic autophagy. Eur. J. Biochem.236, 163–170 (1996). ArticleCAS Google Scholar
Orrenius, S., Zhivotovsky, B. & Nicotera, P. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol.4, 552–565 (2003). ArticleCAS Google Scholar