Potential therapeutic applications of autophagy (original) (raw)
Tallóczy, Z., Virgin, H. W. IV & Levine, B. PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy2, 24–29 (2006). ArticlePubMed Google Scholar
Paludan, C. et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science307, 593–596 (2005). ArticleCASPubMed Google Scholar
Rubinsztein, D. C. et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy1, 11–22 (2005). ArticleCASPubMed Google Scholar
Botti, J., Djavaheri-Mergny, M., Pilatte, Y. & Codogno, P. Autophagy signaling and the cogwheels of cancer. Autophagy2, 67–73 (2006). ArticleCASPubMed Google Scholar
Jin, S. Autophagy, mitochondrial quality control, and oncogenesis. Autophagy2, 80–84 (2006). ArticleCASPubMed Google Scholar
Belanger, M., Rodrigues, P. H., Dunn, W. A. Jr. & Progulske-Fox, A. Autophagy: a highway for Porphyromonas gingivalis in endothelial cells. Autophagy2, 165–170 (2006). ArticleCASPubMed Google Scholar
Birmingham, C. L. & Brumell, J. H. Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles. Autophagy2, 156–158 (2006). ArticleCASPubMed Google Scholar
Colombo, M. I., Gutierrez, M. G. & Romano, P. S. The two faces of autophagy: Coxiella and Mycobacterium. Autophagy2, 162–164 (2006). ArticleCASPubMed Google Scholar
Dubuisson, J. F. & Swanson, M. S. Mouse infection by Legionella, a model to analyze autophagy. Autophagy2, 179–182 (2006). ArticleCASPubMed Google Scholar
Massey, A. C., Zhang, C. & Cuervo, A. M. Chaperone-mediated autophagy in aging and disease. Curr. Top. Dev. Biol.73, 205–235 (2006). ArticleCAS Google Scholar
Yorimitsu, T. & Klionsky, D. J. Autophagy: molecular machinery for self-eating. Cell Death Differ.12, 1542–1552 (2005). ArticleCASPubMed Google Scholar
Klionsky, D. J. et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell5, 539–545 (2003). ArticleCASPubMed Google Scholar
Ohsumi, Y. & Mizushima, N. Two ubiquitin-like conjugation systems essential for autophagy. Semin. Cell Dev. Biol.15, 231–236 (2004). ArticleCASPubMed Google Scholar
Nair, U. & Klionsky, D. J. Molecular mechanisms and regulation of specific and nonspecific autophagy pathways in yeast. J. Biol. Chem.280, 41785–41788 (2005). ArticleCASPubMed Google Scholar
Kihara, A., Kabeya, Y., Ohsumi, Y. & Yoshimori, T. Beclin-phosphatidylinositol 3-kinase complex functions at the _trans_-Golgi network. EMBO Rep.2, 330–335 (2001). ArticleCASPubMedPubMed Central Google Scholar
Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J. & Codogno, P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem.275, 992–998 (2000). ArticleCASPubMed Google Scholar
Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol.152, 519–530 (2001). ArticleCASPubMedPubMed Central Google Scholar
Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature402, 672–676 (1999). This paper demonstrates thatBECN1acts like the yeastATG6gene and promotes autophagy. The study also provides the first evidence that implicatesBECN1as a tumour-suppressor gene. ArticleCASPubMed Google Scholar
Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest.112, 1809–1820 (2003). This shows that the heterozygous inactivation ofbeclin1results in tumour-predisposition in mice, which confirms that the loss of Beclin 1 activity (seen in certain human cancers) might be relevant to carcinogenesis. ArticleCASPubMedPubMed Central Google Scholar
Young, A. R. J. et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci.119, 3888–3900 (2006). ArticleCASPubMed Google Scholar
Noda, T. et al. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J. Cell Biol.148, 465–480 (2000). ArticleCASPubMedPubMed Central Google Scholar
Blommaart, E. F., Luiken, J. J., Blommaart, P. J., van Woerkom, G. M. & Meijer, A. J. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J. Biol. Chem.270, 2320–2326 (1995). ArticleCASPubMed Google Scholar
Klionsky, D. J., Meijer, A. J., Codogno, P., Neufeld, T. P. & Scott, R. C. Autophagy and p70S6 kinase. Autophagy1, 59–61 (2005). ArticleCASPubMed Google Scholar
Noda, T. & Ohsumi, Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem.273, 3963–3966 (1998). ArticleCASPubMed Google Scholar
Bjornsti, M. A. & Houghton, P. J. The TOR pathway: a target for cancer therapy. Nature Rev. Cancer4, 335–348 (2004). ArticleCAS Google Scholar
Galanis, E. et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J. Clin. Oncol.23, 5294–5304 (2005). ArticleCASPubMed Google Scholar
Lee, V. W. & Chapman, J. R. Sirolimus: its role in nephrology. Nephrology (Carlton)10, 606–614 (2005). ArticleCAS Google Scholar
Frias, M. A. et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol.16, 1865–1870 (2006). ArticleCASPubMed Google Scholar
Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science307, 1098–1101 (2005). ArticleCASPubMed Google Scholar
Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell22, 159–168 (2006). ArticleCASPubMed Google Scholar
Sabatini, D. M. mTOR and cancer: insights into a complex relationship. Nature Rev. Cancer6, 729–34 (2006). ArticleCAS Google Scholar
Sarkar, S. et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol.170, 1101–1111 (2005). This paper describes a novel mTOR-independent pathway for inducing autophagy. This pathway, which is negatively regulated by IP3levels, can be activated by commonly used drugs such as lithium, carbemazepine and sodium valproate. Thus, these drugs might have clinical utility for autophagy upregulation. ArticleCASPubMedPubMed Central Google Scholar
Berridge, M. J. Unlocking the secrets of cell signaling. Annu. Rev. Physiol.67, 1–21 (2005). ArticleCASPubMed Google Scholar
Menzies, F. M., Ravikumar, B. & Rubinsztein, D. C. Protective roles for induction of autophagy in multiple proteinopathies. Autophagy2, 224–225 (2006). ArticleCASPubMed Google Scholar
Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature431, 805–810 (2004). ArticleCASPubMed Google Scholar
Sanchez, I., Mahlke, C. & Yuan, J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature421, 373–379 (2003). ArticleCASPubMed Google Scholar
Ravikumar, B., Duden, R. & Rubinsztein, D. C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet.11, 1107–1117 (2002). This was the first study that suggested that aggregate-prone intracytosolic proteins, such as mutant huntingtin fragments, are dependent on autophagy for their clearance. It also provides the 'proof-of-principle' for protective effects of autophagy upregulation in cell models of Huntington's disease. ArticleCASPubMed Google Scholar
Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N. & Rubinsztein, D. C. α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem.278, 25009–25013 (2003). ArticleCASPubMed Google Scholar
Iwata, A. et al. Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc. Natl Acad. Sci. USA102, 13135–13140 (2005). ArticleCASPubMedPubMed Central Google Scholar
Qin, Z. H. et al. Autophagy regulates the processing of amino terminal huntingtin fragments. Hum. Mol. Genet.12, 3231–3244 (2003). ArticleCASPubMed Google Scholar
Shibata, M. et al. Regulation of intracellular accumulation of mutant huntingtin by Beclin 1. J. Biol. Chem.281, 14474–14485 (2006). ArticleCASPubMed Google Scholar
Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet.36, 585–595 (2004). This study shows that rapamycin attenuates the toxicity of mutant huntingtinin vivo, using transgenicD. melangasterand mouse models. The study also reports upregulation of autophagy in polyglutamine diseases. ArticleCASPubMed Google Scholar
Berger, Z. et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet.15, 433–442 (2006). ArticleCASPubMed Google Scholar
Kabuta, T., Suzuki, Y. & Wada, K. Degradation of amyotrophic lateral sclerosis-linked mutant Cu, Zn-superoxide dismutase proteins by macroautophagy and the proteasome. J. Biol. Chem.281, 30524–30533 (2006). ArticleCASPubMed Google Scholar
Fortun, J., Dunn, W. A., Jr., Joy, S., Li, J. & Notterpek, L. Emerging role for autophagy in the removal of aggresomes in Schwann cells. J. Neurosci.23, 10672–10680 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature441, 885–889 (2006). This study shows that the targeted disruption ofATG5(which blocks autophagy) in neuronal cells results in the formation of inclusion bodies and neurodegeneration. This suggests that normal cellular proteins are autophagy substrates and that a blockade of basal autophagy is neurotoxic. ArticleCASPubMed Google Scholar
Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature441, 880–884 (2006). This study shows that the targeted disruption ofATG7(which blocks autophagy) in neuronal cells results in formation of inclusion bodies and neurodegeneration. This study was published together with reference 56, and the two papers provide compelling and complementary evidence that basal autophagy is crucial for neuronal survival. ArticleCASPubMed Google Scholar
Yamamoto, A., Lucas, J. J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell101, 57–66 (2000). ArticleCASPubMed Google Scholar
Ravikumar, B., Berger, Z., Vacher, C., O'Kane, C. J. & Rubinsztein, D. C. Rapamycin pre-treatment protects against apoptosis. Hum. Mol. Genet.15, 1209–1216 (2006). ArticleCASPubMed Google Scholar
Kessel, D. & Reiners, J. J. Jr. Initiation of apoptosis and autophagy by the Bcl-2 antagonist HA14-1. Cancer Lett. 18 Oct 2006 (doi:10.1016/j.canlet.2006.09.009).
Saeki, K. et al. Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ.7, 1263–1269 (2000). ArticleCASPubMed Google Scholar
Verhoef, L. G., Lindsten, K., Masucci, M. G. & Dantuma, N. P. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum. Mol. Genet.11, 2689–2700 (2002). ArticleCASPubMed Google Scholar
Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell119, 753–766 (2004). This paper provides strong evidence that mycobacteria are degraded by autophagy in infected macrophages. ArticleCASPubMed Google Scholar
Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science306, 1037–1040 (2004). This paper shows that autophagy can help to eliminate group AStreptococciin non-phagocytic cells. ArticleCASPubMed Google Scholar
Kirkegaard, K., Taylor, M. P. & Jackson, W. T. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nature Rev. Microbiol.2, 301–314 (2004). ArticleCAS Google Scholar
Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell126, 121–134 (2006). ArticleCASPubMed Google Scholar
Hippert, M. M., O' Toole P, S. & Thorburn, A. Autophagy in cancer: good, bad, or both? Cancer Res.66, 9349–9351 (2006). ArticleCASPubMed Google Scholar
Wienecke, R. et al. Antitumoral activity of rapamycin in renal angiomyolipoma associated with tuberous sclerosis complex. Am. J. Kidney Dis.48, e27–e29 (2006). ArticlePubMed Google Scholar
Furuya, N., Liang, X. H. & Levine, B. in Autophagy (ed. Klionsky, D. J.) 241–255 (Landes Bioscience, Georgetown, 2004). Google Scholar
Amaravadi, R. K. et al. Autophagy inhibition enhances therapy-induced apoptosis in a _Myc_-induced model of lymphoma. J. Clin. Invest. (2007). This paper suggests that autophagy inhibition enhances various pro-apoptotic chemotherapeutic strategies that might be of value in treating certain cancers.
Cantley, L. C. & Neel, B. G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. USA96, 4240–4245 (1999). ArticleCASPubMedPubMed Central Google Scholar
Liu, Z. & Roberts, T. M. Human tumor mutants in the p110α subunit of PI3K. Cell Cycle5, 675–677 (2006). ArticleCASPubMed Google Scholar
Vanhaesebroeck, B., Ali, K., Bilancio, A., Geering, B. & Foukas, L. C. Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem. Sci.30, 194–204 (2005). ArticleCASPubMed Google Scholar
Ward, S. G. & Finan, P. Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agents. Curr. Opin. Pharmacol.3, 426–434 (2003). ArticleCASPubMed Google Scholar
Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell10, 51–64 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell120, 237–248 (2005). Bax−/−Bak−/−cells activate autophagy, undergo progressive atrophy, and eventually die after growth factor withdrawal. This study shows that autophagy is a protective response against cell death in this context. ArticleCASPubMed Google Scholar
Knight, Z. A. et al. A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell125, 733–747 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yamamoto, A. et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct.23, 33–42 (1998). ArticleCASPubMed Google Scholar
Fass, E., Shvets, E., Degani, I., Hirschberg, K. & Elazar, Z. Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J. Biol. Chem.281, 36303–36316 (2006). ArticleCASPubMed Google Scholar
Boya, P. et al. Inhibition of macroautophagy triggers apoptosis. Mol. Cell. Biol.25, 1025–1040 (2005). This study reports that mammalian cells are much more likely to die after growth factor withdrawal if autophagy is inhibited. ArticleCASPubMedPubMed Central Google Scholar
Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature435, 677–681 (2005). ArticleCASPubMed Google Scholar
Leung-Toung, R. et al. Thiol proteases: inhibitors and potential therapeutic targets. Curr. Med. Chem.13, 547–581 (2006). ArticleCASPubMed Google Scholar
Kumanomidou, T. et al. The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J. Mol. Biol.355, 612–618 (2006). ArticleCASPubMed Google Scholar
Knight, Z. A. & Shokat, K. M. Features of selective kinase inhibitors. Chem. Biol.12, 621–637 (2005). ArticleCASPubMed Google Scholar
Levitzki, A. & Gazit, A. Tyrosine kinase inhibition: an approach to drug development. Science267, 1782–1788 (1995). ArticleCASPubMed Google Scholar
Berg, T. Modulation of protein-protein interactions with small organic molecules. Angew. Chem. Int. Ed. Engl.42, 2462–2481 (2003). ArticleCASPubMed Google Scholar
Gestwicki, J. E., Crabtree, G. R. & Graef, I. A. Harnessing chaperones to generate small-molecule inhibitors of amyloid β aggregation. Science306, 865–869 (2004). ArticleCASPubMed Google Scholar
Toogood, P. L. Inhibition of protein–protein association by small molecules: approaches and progress. J. Med. Chem.45, 1543–1558 (2002). ArticleCASPubMed Google Scholar