Exposing the fitness contribution of duplicated genes (original) (raw)
References
Gu, Z.L. et al. Role of duplicate genes in genetic robustness against null mutations. Nature421, 63–66 (2003). ArticleCAS Google Scholar
Seoighe, C. & Wolfe, K.H. Yeast genome evolution in the post-genome era. Curr. Opin. Microbiol.2, 548–554 (1999). ArticleCAS Google Scholar
Wagner, A. Robustness against mutations in genetic networks of yeast. Nat. Genet.24, 355–361 (2000). ArticleCAS Google Scholar
Papp, B., Pal, C. & Hurst, L.D. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature429, 661–664 (2004). ArticleCAS Google Scholar
Kafri, R., Bar-Even, A. & Pilpel, Y. Transcription control reprogramming in genetic backup circuits. Nat. Genet.37, 295–299 (2005). ArticleCAS Google Scholar
Kuepfer, L., Sauer, U. & Blank, L.M. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res.15, 1421–1430 (2005). ArticleCAS Google Scholar
He, X.L. & Zhang, J.Z. Higher duplicability of less important genes in yeast genomes. Mol. Biol. Evol.23, 144–151 (2006). ArticleCAS Google Scholar
Tong, A.H.Y. et al. Global mapping of the yeast genetic interaction network. Science303, 808–813 (2004). ArticleCAS Google Scholar
Segre, D., DeLuna, A., Church, G.M. & Kishony, R. Modular epistasis in yeast metabolism. Nat. Genet.37, 77–83 (2005). ArticleCAS Google Scholar
Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell123, 507–519 (2005). ArticleCAS Google Scholar
St Onge, R.P. et al. Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat. Genet.39, 199–206 (2007). ArticleCAS Google Scholar
Hegreness, M., Shoresh, N., Hartl, D. & Kishony, R. An equivalence principle for the incorporation of favorable mutations in asexual populations. Science311, 1615–1617 (2006). ArticleCAS Google Scholar
Thatcher, J.W., Shaw, J.M. & Dickinson, W.J. Marginal fitness contributions of nonessential genes in yeast. Proc. Natl. Acad. Sci. USA95, 253–257 (1998). ArticleCAS Google Scholar
Deutscher, D., Meilijson, I., Kupiec, M. & Ruppin, E. Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat. Genet.38, 993–998 (2006). ArticleCAS Google Scholar
Harrison, R., Papp, B., Pál, C., Oliver, S.G. & Delneri, D. Plasticity of genetic interactions in metabolic networks of yeast. Proc. Natl. Acad. Sci. USA104, 2307–2312 (2007). ArticleCAS Google Scholar
Wolfe, K.H. & Shields, D.C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature387, 708–713 (1997). ArticleCAS Google Scholar
Kellis, M., Birren, B.W. & Lander, E.S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature428, 617–624 (2004). ArticleCAS Google Scholar
Lynch, M. & Force, A. The probability of duplicate gene preservation by subfunctionalization. Genetics154, 459–473 (2000). CASPubMedPubMed Central Google Scholar
He, X. & Zhang, J. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics169, 1157–1164 (2005). Article Google Scholar
Tirosh, I. & Barkai, N. Comparative analysis indicates regulatory neofunctionalization of yeast duplicates. Genome Biol.8, R50 (2007). Article Google Scholar
Vitkup, D., Kharchenko, P. & Wagner, A. Influence of metabolic network structure and function on enzyme evolution. Genome Biol.7, R39 (2006). Article Google Scholar
Conant, G.C. & Wolfe, K.H. Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol. Systems Biol.3, 129 (2007). Article Google Scholar
Guan, Y., Dunham, M.J. & Troyanskaya, O.G. Functional analysis of gene duplications in Saccharomyces cerevisiae. Genetics175, 933–943 (2007). ArticleCAS Google Scholar
Presser, A., Elowitz, M.B., Kellis, M. & Kishony, R. The evolutionary dynamics of the Saccharomyces cerevisiae protein interaction network after duplication. Proc. Natl. Acad. Sci. USA105, 950–954 (2008). ArticleCAS Google Scholar
Makino, T., Suzuki, Y. & Gojobori, T. Differential evolutionary rates of duplicated genes in protein interaction network. Gene385, 57–63 (2006). ArticleCAS Google Scholar
Wapinski, I., Pfeffer, A., Friedman, N. & Regev, A. Natural history and evolutionary principles of gene duplication in fungi. Nature449, 54–61 (2007). ArticleCAS Google Scholar
Kafri, R., Levy, M. & Pilpel, Y. The regulatory utilization of genetic redundancy through responsive backup circuits. Proc. Natl. Acad. Sci. USA103, 11653–11658 (2006). ArticleCAS Google Scholar
Ihmels, J., Collins, S.R., Schuldiner, M., Krogan, N.J. & Weissman, J.S. Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss. Molecular Systems Biology3, 86 (2007). Article Google Scholar
Huh, W.-K. et al. Global analysis of protein localization in budding yeast. Nature425, 686–691 (2003). ArticleCAS Google Scholar
DeLuna, A., Avendano, A., Riego, L. & Gonzalez, A. NADP-glutamate dehydrogenase isoenzymes of _Saccharomyces cerevisiae_—purification, kinetic properties, and physiological roles. J. Biol. Chem.276, 43775–43783 (2001). ArticleCAS Google Scholar