Exposing the fitness contribution of duplicated genes (original) (raw)

References

  1. Gu, Z.L. et al. Role of duplicate genes in genetic robustness against null mutations. Nature 421, 63–66 (2003).
    Article CAS Google Scholar
  2. Seoighe, C. & Wolfe, K.H. Yeast genome evolution in the post-genome era. Curr. Opin. Microbiol. 2, 548–554 (1999).
    Article CAS Google Scholar
  3. Wagner, A. Robustness against mutations in genetic networks of yeast. Nat. Genet. 24, 355–361 (2000).
    Article CAS Google Scholar
  4. Papp, B., Pal, C. & Hurst, L.D. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429, 661–664 (2004).
    Article CAS Google Scholar
  5. Kafri, R., Bar-Even, A. & Pilpel, Y. Transcription control reprogramming in genetic backup circuits. Nat. Genet. 37, 295–299 (2005).
    Article CAS Google Scholar
  6. Kuepfer, L., Sauer, U. & Blank, L.M. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 15, 1421–1430 (2005).
    Article CAS Google Scholar
  7. He, X.L. & Zhang, J.Z. Higher duplicability of less important genes in yeast genomes. Mol. Biol. Evol. 23, 144–151 (2006).
    Article CAS Google Scholar
  8. Tong, A.H.Y. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).
    Article CAS Google Scholar
  9. Segre, D., DeLuna, A., Church, G.M. & Kishony, R. Modular epistasis in yeast metabolism. Nat. Genet. 37, 77–83 (2005).
    Article CAS Google Scholar
  10. Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 (2005).
    Article CAS Google Scholar
  11. St Onge, R.P. et al. Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat. Genet. 39, 199–206 (2007).
    Article CAS Google Scholar
  12. Hegreness, M., Shoresh, N., Hartl, D. & Kishony, R. An equivalence principle for the incorporation of favorable mutations in asexual populations. Science 311, 1615–1617 (2006).
    Article CAS Google Scholar
  13. Thatcher, J.W., Shaw, J.M. & Dickinson, W.J. Marginal fitness contributions of nonessential genes in yeast. Proc. Natl. Acad. Sci. USA 95, 253–257 (1998).
    Article CAS Google Scholar
  14. Deutscher, D., Meilijson, I., Kupiec, M. & Ruppin, E. Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat. Genet. 38, 993–998 (2006).
    Article CAS Google Scholar
  15. Harrison, R., Papp, B., Pál, C., Oliver, S.G. & Delneri, D. Plasticity of genetic interactions in metabolic networks of yeast. Proc. Natl. Acad. Sci. USA 104, 2307–2312 (2007).
    Article CAS Google Scholar
  16. Wolfe, K.H. & Shields, D.C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997).
    Article CAS Google Scholar
  17. Kellis, M., Birren, B.W. & Lander, E.S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624 (2004).
    Article CAS Google Scholar
  18. Lynch, M. & Force, A. The probability of duplicate gene preservation by subfunctionalization. Genetics 154, 459–473 (2000).
    CAS PubMed PubMed Central Google Scholar
  19. He, X. & Zhang, J. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 169, 1157–1164 (2005).
    Article Google Scholar
  20. Tirosh, I. & Barkai, N. Comparative analysis indicates regulatory neofunctionalization of yeast duplicates. Genome Biol. 8, R50 (2007).
    Article Google Scholar
  21. Vitkup, D., Kharchenko, P. & Wagner, A. Influence of metabolic network structure and function on enzyme evolution. Genome Biol. 7, R39 (2006).
    Article Google Scholar
  22. Conant, G.C. & Wolfe, K.H. Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol. Systems Biol. 3, 129 (2007).
    Article Google Scholar
  23. Guan, Y., Dunham, M.J. & Troyanskaya, O.G. Functional analysis of gene duplications in Saccharomyces cerevisiae. Genetics 175, 933–943 (2007).
    Article CAS Google Scholar
  24. Presser, A., Elowitz, M.B., Kellis, M. & Kishony, R. The evolutionary dynamics of the Saccharomyces cerevisiae protein interaction network after duplication. Proc. Natl. Acad. Sci. USA 105, 950–954 (2008).
    Article CAS Google Scholar
  25. Makino, T., Suzuki, Y. & Gojobori, T. Differential evolutionary rates of duplicated genes in protein interaction network. Gene 385, 57–63 (2006).
    Article CAS Google Scholar
  26. Wapinski, I., Pfeffer, A., Friedman, N. & Regev, A. Natural history and evolutionary principles of gene duplication in fungi. Nature 449, 54–61 (2007).
    Article CAS Google Scholar
  27. Kafri, R., Levy, M. & Pilpel, Y. The regulatory utilization of genetic redundancy through responsive backup circuits. Proc. Natl. Acad. Sci. USA 103, 11653–11658 (2006).
    Article CAS Google Scholar
  28. Ihmels, J., Collins, S.R., Schuldiner, M., Krogan, N.J. & Weissman, J.S. Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss. Molecular Systems Biology 3, 86 (2007).
    Article Google Scholar
  29. Huh, W.-K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).
    Article CAS Google Scholar
  30. DeLuna, A., Avendano, A., Riego, L. & Gonzalez, A. NADP-glutamate dehydrogenase isoenzymes of _Saccharomyces cerevisiae_—purification, kinetic properties, and physiological roles. J. Biol. Chem. 276, 43775–43783 (2001).
    Article CAS Google Scholar

Download references