De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy (original) (raw)
References
Coppola, G., Plouin, P., Chiron, C., Robain, O. & Dulac, O. Migrating partial seizures in infancy: a malignant disorder with developmental arrest. Epilepsia36, 1017–1024 (1995). ArticleCAS Google Scholar
Coppola, G. et al. Mutational scanning of potassium, sodium and chloride ion channels in malignant migrating partial seizures in infancy. Brain Dev.28, 76–79 (2006). Article Google Scholar
Gérard, F., Kaminska, A., Plouin, P., Echenne, B. & Dulac, O. Focal seizures versus focal epilepsy in infancy: a challenging distinction. Epileptic Disord.1, 135–139 (1999). PubMed Google Scholar
Okuda, K. et al. Successful control with bromide of two patients with malignant migrating partial seizures in infancy. Brain Dev.22, 56–59 (2000). ArticleCAS Google Scholar
Wilmshurst, J.M., Appleton, D.B. & Grattan-Smith, P.J. Migrating partial seizures in infancy: two new cases. J. Child Neurol.15, 717–722 (2000). ArticleCAS Google Scholar
Veneselli, E., Perrone, M.V., Di Rocco, M., Gaggero, R. & Biancheri, R. Malignant migrating partial seizures in infancy. Epilepsy Res.46, 27–32 (2001). ArticleCAS Google Scholar
Gross-Tsur, V., Ben-Zeev, B. & Shalev, R.S. Malignant migrating partial seizures in infancy. Pediatr. Neurol.31, 287–290 (2004). Article Google Scholar
Marsh, E., Melamed, S.E., Barron, T. & Clancy, R.R. Migrating partial seizures in infancy: expanding the phenotype of a rare seizure syndrome. Epilepsia46, 568–572 (2005). Article Google Scholar
Hmaimess, G., Kadhim, H., Nassogne, M.C., Bonnier, C. & van Rijckevorsel, K. Levetiracetam in a neonate with malignant migrating partial seizures. Pediatr. Neurol.34, 55–59 (2006). Article Google Scholar
Zamponi, N., Rychlicki, F., Corpaci, L., Cesaroni, E. & Trignani, R. Vagus nerve stimulation (VNS) is effective in treating catastrophic 1 epilepsy in very young children. Neurosurg. Rev.31, 291–297 (2008). Article Google Scholar
Caraballo, R.H. et al. Migrating focal seizures in infancy: analysis of the electroclinical patterns in 17 patients. J. Child Neurol.23, 497–506 (2008). Article Google Scholar
Lee, E.H., Yum, M.S., Jeong, M.H., Lee, K.Y. & Ko, T.S. A case of malignant migrating partial seizures in infancy as a continuum of infantile epileptic encephalopathy. Brain Dev.34, 768–772 (2012). Article Google Scholar
Gilhuis, H.J., Schieving, J. & Zwarts, M.J. Malignant migrating partial seizures in a 4-month-old boy. Epileptic Disord.13, 185–187 (2011). PubMed Google Scholar
Djuric, M., Kravljanac, R., Kovacevic, G. & Martic, J. The efficacy of bromides, stiripentol and levetiracetam in two patients with malignant migrating partial seizures in infancy. Epileptic Disord.13, 22–26 (2011). PubMed Google Scholar
Carranza Rojo, D. et al. De novo SCN1A mutations in migrating partial seizures of infancy. Neurology77, 380–383 (2011). ArticleCAS Google Scholar
Freilich, E.R. et al. Novel SCN1A mutation in a proband with malignant migrating partial seizures of infancy. Arch. Neurol.68, 665–671 (2011). Article Google Scholar
Vendrame, M. et al. Treatment of malignant migrating partial epilepsy of infancy with rufinamide: report of five cases. Epileptic Disord.13, 18–21 (2011). PubMed Google Scholar
Nabbout, R. & Dulac, O. Epileptic syndromes in infancy and childhood. Curr. Opin. Neurol.21, 161–166 (2008). Article Google Scholar
Poduri, A. & Lowenstein, D. Epilepsy genetics—past, present, and future. Curr. Opin. Genet. Dev.21, 325–332 (2011). ArticleCAS Google Scholar
Yuan, A. et al. The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron37, 765–773 (2003). ArticleCAS Google Scholar
Bhattacharjee, A. & Kaczmarek, L.K. For K+ channels, Na+ is the new Ca 2 + . Trends Neurosci.28, 422–428 (2005). ArticleCAS Google Scholar
Brown, M.R. et al. Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation. J. Physiol. (Lond.)586, 5161–5179 (2008). ArticleCAS Google Scholar
Ruffin, V.A. et al. The sodium-activated potassium channel Slack is modulated by hypercapnia and acidosis. Neuroscience151, 410–418 (2008). ArticleCAS Google Scholar
Brown, M.R. et al. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat. Neurosci.13, 819–821 (2010). ArticleCAS Google Scholar
Chen, H. et al. The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels. J. Neurosci.29, 5654–5665 (2009). ArticleCAS Google Scholar
Santi, C.M. et al. Opposite regulation of Slick and Slack K+ channels by neuromodulators. J. Neurosci.26, 5059–5068 (2006). ArticleCAS Google Scholar
Joiner, W.J. et al. Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. Nat. Neurosci.1, 462–469 (1998). ArticleCAS Google Scholar
Yang, B., Desai, R. & Kaczmarek, L.K. Slack and Slick KNa channels regulate the accuracy of timing of auditory neurons. J. Neurosci.27, 2617–2627 (2007). ArticleCAS Google Scholar
Nabbout, R. et al. Spectrum of SCN1A mutations in severe myoclonic epilepsy of infancy. Neurology60, 1961–1967 (2003). ArticleCAS Google Scholar
Steinlein, O.K., Conrad, C. & Weidner, B. Benign familial neonatal convulsions: always benign? Epilepsy Res.73, 245–249 (2007). ArticleCAS Google Scholar
Weckhuysen, S. et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann. Neurol.71, 15–25 (2012). ArticleCAS Google Scholar
Wei, A.D.v. et al. International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol. Rev.57, 463–472 (2005). ArticleCAS Google Scholar
Du, W. et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat. Genet.37, 733–738 (2005). ArticleCAS Google Scholar
Kaczmarek, L.K. Non-conducting functions of voltage-gated ion channels. Nat. Rev. Neurosci.7, 761–771 (2006). ArticleCAS Google Scholar
Fleming, M.R. & Kaczmarek, L.K. Use of optical biosensors to detect modulation of Slack potassium channels by G protein–coupled receptors. J. Recept. Signal Transduct. Res.29, 173–181 (2009). ArticleCAS Google Scholar
O'Roak, B.J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet.43, 585–589 (2011). ArticleCAS Google Scholar
Hamdan, F.F. et al. Intellectual disability without epilepsy associated with STXBP1 disruption. Eur. J. Hum. Genet.19, 607–609 (2011). ArticleCAS Google Scholar
Friocourt, G. & Parnavelas, J.G. Mutations in ARX result in several defects involving GABAergic neurons. Front Cell Neurosci.4, 4 (2010). PubMedPubMed Central Google Scholar
Bolton, P.F., Park, R.J., Higgins, J.N., Griffiths, P.D. & Pickles, A. Neuro-epileptic determinants of autism spectrum disorders in tuberous sclerosis complex. Brain125, 1247–1255 (2002). Article Google Scholar
Byun, M. et al. Whole-exome sequencing–based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J. Exp. Med.207, 2307–2312 (2010). ArticleCAS Google Scholar
Bolze, A. et al. Whole-exome-sequencing–based discovery of human FADD deficiency. Am. J. Hum. Genet.87, 873–881 (2010). ArticleCAS Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25, 1754–1760 (2009). ArticleCAS Google Scholar
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.20, 1297–1303 (2010). ArticleCAS Google Scholar
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics25, 2078–2079 (2009). Article Google Scholar
Chen, W., Han, Y., Chen, Y. & Astumian, D. Electric field–induced functional reductions in the K+ channels mainly resulted from supramembrane potential–mediated electroconformational changes. Biophys. J.75, 196–206 (1998). ArticleCAS Google Scholar
Brewer, G.J., Torricelli, J.R., Evege, E.K. & Price, P.J. Optimized survival of hippocampal-neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res.35, 567–576 (1993). ArticleCAS Google Scholar
Bhattacharjee, A., Gan, L. & Kaczmarek, L.K. Localization of the Slack potassium channel in the rat central nervous system. J. Comp. Neurol.454, 241–254 (2002). ArticleCAS Google Scholar
Lobner, D. Saturation of neuroprotective effects of adenosine in cortical culture. Neuroreport13, 2075–2078 (2002). ArticleCAS Google Scholar