De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy (original) (raw)

References

  1. Coppola, G., Plouin, P., Chiron, C., Robain, O. & Dulac, O. Migrating partial seizures in infancy: a malignant disorder with developmental arrest. Epilepsia 36, 1017–1024 (1995).
    Article CAS Google Scholar
  2. Coppola, G. et al. Mutational scanning of potassium, sodium and chloride ion channels in malignant migrating partial seizures in infancy. Brain Dev. 28, 76–79 (2006).
    Article Google Scholar
  3. Gérard, F., Kaminska, A., Plouin, P., Echenne, B. & Dulac, O. Focal seizures versus focal epilepsy in infancy: a challenging distinction. Epileptic Disord. 1, 135–139 (1999).
    PubMed Google Scholar
  4. Okuda, K. et al. Successful control with bromide of two patients with malignant migrating partial seizures in infancy. Brain Dev. 22, 56–59 (2000).
    Article CAS Google Scholar
  5. Wilmshurst, J.M., Appleton, D.B. & Grattan-Smith, P.J. Migrating partial seizures in infancy: two new cases. J. Child Neurol. 15, 717–722 (2000).
    Article CAS Google Scholar
  6. Veneselli, E., Perrone, M.V., Di Rocco, M., Gaggero, R. & Biancheri, R. Malignant migrating partial seizures in infancy. Epilepsy Res. 46, 27–32 (2001).
    Article CAS Google Scholar
  7. Gross-Tsur, V., Ben-Zeev, B. & Shalev, R.S. Malignant migrating partial seizures in infancy. Pediatr. Neurol. 31, 287–290 (2004).
    Article Google Scholar
  8. Marsh, E., Melamed, S.E., Barron, T. & Clancy, R.R. Migrating partial seizures in infancy: expanding the phenotype of a rare seizure syndrome. Epilepsia 46, 568–572 (2005).
    Article Google Scholar
  9. Hmaimess, G., Kadhim, H., Nassogne, M.C., Bonnier, C. & van Rijckevorsel, K. Levetiracetam in a neonate with malignant migrating partial seizures. Pediatr. Neurol. 34, 55–59 (2006).
    Article Google Scholar
  10. Zamponi, N., Rychlicki, F., Corpaci, L., Cesaroni, E. & Trignani, R. Vagus nerve stimulation (VNS) is effective in treating catastrophic 1 epilepsy in very young children. Neurosurg. Rev. 31, 291–297 (2008).
    Article Google Scholar
  11. Caraballo, R.H. et al. Migrating focal seizures in infancy: analysis of the electroclinical patterns in 17 patients. J. Child Neurol. 23, 497–506 (2008).
    Article Google Scholar
  12. Lee, E.H., Yum, M.S., Jeong, M.H., Lee, K.Y. & Ko, T.S. A case of malignant migrating partial seizures in infancy as a continuum of infantile epileptic encephalopathy. Brain Dev. 34, 768–772 (2012).
    Article Google Scholar
  13. Gilhuis, H.J., Schieving, J. & Zwarts, M.J. Malignant migrating partial seizures in a 4-month-old boy. Epileptic Disord. 13, 185–187 (2011).
    PubMed Google Scholar
  14. Djuric, M., Kravljanac, R., Kovacevic, G. & Martic, J. The efficacy of bromides, stiripentol and levetiracetam in two patients with malignant migrating partial seizures in infancy. Epileptic Disord. 13, 22–26 (2011).
    PubMed Google Scholar
  15. Carranza Rojo, D. et al. De novo SCN1A mutations in migrating partial seizures of infancy. Neurology 77, 380–383 (2011).
    Article CAS Google Scholar
  16. Freilich, E.R. et al. Novel SCN1A mutation in a proband with malignant migrating partial seizures of infancy. Arch. Neurol. 68, 665–671 (2011).
    Article Google Scholar
  17. Vendrame, M. et al. Treatment of malignant migrating partial epilepsy of infancy with rufinamide: report of five cases. Epileptic Disord. 13, 18–21 (2011).
    PubMed Google Scholar
  18. Nabbout, R. & Dulac, O. Epileptic syndromes in infancy and childhood. Curr. Opin. Neurol. 21, 161–166 (2008).
    Article Google Scholar
  19. Poduri, A. & Lowenstein, D. Epilepsy genetics—past, present, and future. Curr. Opin. Genet. Dev. 21, 325–332 (2011).
    Article CAS Google Scholar
  20. Yuan, A. et al. The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron 37, 765–773 (2003).
    Article CAS Google Scholar
  21. Bhattacharjee, A. & Kaczmarek, L.K. For K+ channels, Na+ is the new Ca 2 + . Trends Neurosci. 28, 422–428 (2005).
    Article CAS Google Scholar
  22. Brown, M.R. et al. Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation. J. Physiol. (Lond.) 586, 5161–5179 (2008).
    Article CAS Google Scholar
  23. Ruffin, V.A. et al. The sodium-activated potassium channel Slack is modulated by hypercapnia and acidosis. Neuroscience 151, 410–418 (2008).
    Article CAS Google Scholar
  24. Brown, M.R. et al. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat. Neurosci. 13, 819–821 (2010).
    Article CAS Google Scholar
  25. Chen, H. et al. The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels. J. Neurosci. 29, 5654–5665 (2009).
    Article CAS Google Scholar
  26. Santi, C.M. et al. Opposite regulation of Slick and Slack K+ channels by neuromodulators. J. Neurosci. 26, 5059–5068 (2006).
    Article CAS Google Scholar
  27. Joiner, W.J. et al. Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. Nat. Neurosci. 1, 462–469 (1998).
    Article CAS Google Scholar
  28. Yang, B., Desai, R. & Kaczmarek, L.K. Slack and Slick KNa channels regulate the accuracy of timing of auditory neurons. J. Neurosci. 27, 2617–2627 (2007).
    Article CAS Google Scholar
  29. Nabbout, R. et al. Spectrum of SCN1A mutations in severe myoclonic epilepsy of infancy. Neurology 60, 1961–1967 (2003).
    Article CAS Google Scholar
  30. Steinlein, O.K., Conrad, C. & Weidner, B. Benign familial neonatal convulsions: always benign? Epilepsy Res. 73, 245–249 (2007).
    Article CAS Google Scholar
  31. Weckhuysen, S. et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann. Neurol. 71, 15–25 (2012).
    Article CAS Google Scholar
  32. Wei, A.D.v. et al. International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol. Rev. 57, 463–472 (2005).
    Article CAS Google Scholar
  33. Du, W. et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat. Genet. 37, 733–738 (2005).
    Article CAS Google Scholar
  34. Kaczmarek, L.K. Non-conducting functions of voltage-gated ion channels. Nat. Rev. Neurosci. 7, 761–771 (2006).
    Article CAS Google Scholar
  35. Fleming, M.R. & Kaczmarek, L.K. Use of optical biosensors to detect modulation of Slack potassium channels by G protein–coupled receptors. J. Recept. Signal Transduct. Res. 29, 173–181 (2009).
    Article CAS Google Scholar
  36. O'Roak, B.J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43, 585–589 (2011).
    Article CAS Google Scholar
  37. Hamdan, F.F. et al. Intellectual disability without epilepsy associated with STXBP1 disruption. Eur. J. Hum. Genet. 19, 607–609 (2011).
    Article CAS Google Scholar
  38. Friocourt, G. & Parnavelas, J.G. Mutations in ARX result in several defects involving GABAergic neurons. Front Cell Neurosci. 4, 4 (2010).
    PubMed PubMed Central Google Scholar
  39. Bolton, P.F., Park, R.J., Higgins, J.N., Griffiths, P.D. & Pickles, A. Neuro-epileptic determinants of autism spectrum disorders in tuberous sclerosis complex. Brain 125, 1247–1255 (2002).
    Article Google Scholar
  40. Byun, M. et al. Whole-exome sequencing–based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J. Exp. Med. 207, 2307–2312 (2010).
    Article CAS Google Scholar
  41. Bolze, A. et al. Whole-exome-sequencing–based discovery of human FADD deficiency. Am. J. Hum. Genet. 87, 873–881 (2010).
    Article CAS Google Scholar
  42. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
    Article CAS Google Scholar
  43. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
    Article CAS Google Scholar
  44. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    Article Google Scholar
  45. Chen, W., Han, Y., Chen, Y. & Astumian, D. Electric field–induced functional reductions in the K+ channels mainly resulted from supramembrane potential–mediated electroconformational changes. Biophys. J. 75, 196–206 (1998).
    Article CAS Google Scholar
  46. Brewer, G.J., Torricelli, J.R., Evege, E.K. & Price, P.J. Optimized survival of hippocampal-neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).
    Article CAS Google Scholar
  47. Bhattacharjee, A., Gan, L. & Kaczmarek, L.K. Localization of the Slack potassium channel in the rat central nervous system. J. Comp. Neurol. 454, 241–254 (2002).
    Article CAS Google Scholar
  48. Lobner, D. Saturation of neuroprotective effects of adenosine in cortical culture. Neuroreport 13, 2075–2078 (2002).
    Article CAS Google Scholar

Download references