A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis (original) (raw)
References
- Kim, W.R., Brown, R.S., Terrault, N.A. & El-Serag, H. Burden of liver disease in the United States: summary of a workshop. Hepatology 36, 227–242 (2002).
Article Google Scholar - Rehm, J., Samokhvalov, A.V. & Shield, K.D. Global burden of alcoholic liver diseases. J. Hepatol. 59, 160–168 (2013).
Article Google Scholar - Burra, P. et al. Liver transplantation for alcoholic liver disease in Europe: a study from the ELTR (European Liver Transplant Registry). Am. J. Transplant. 10, 138–148 (2010).
Article CAS Google Scholar - Teli, M.R., Day, C.P., Burt, A.D., Bennett, M.K. & James, O.F. Determinants of progression to cirrhosis or fibrosis in pure alcoholic fatty liver. Lancet 346, 987–990 (1995).
Article CAS Google Scholar - Hrubec, Z. & Omenn, G.S. Evidence of genetic predisposition to alcoholic cirrhosis and psychosis: twin concordances for alcoholism and its biological end points by zygosity among male veterans. Alcohol. Clin. Exp. Res. 5, 207–215 (1981).
Article CAS Google Scholar - Reed, T., Page, W.F., Viken, R.J. & Christian, J.C. Genetic predisposition to organ-specific endpoints of alcoholism. Alcohol. Clin. Exp. Res. 20, 1528–1533 (1996).
Article CAS Google Scholar - Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).
Article CAS Google Scholar - Tian, C., Stokowski, R.P., Kershenobich, D., Ballinger, D.G. & Hinds, D.A. Variant in PNPLA3 is associated with alcoholic liver disease. Nat. Genet. 42, 21–23 (2010).
Article CAS Google Scholar - Stickel, F. et al. Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in Caucasians. Hepatology 53, 86–95 (2011).
Article CAS Google Scholar - Pirazzi, C. et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum. Mol. Genet. 23, 4077–4085 (2014).
Article CAS Google Scholar - Smagris, E. et al. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 61, 108–118 (2015).
Article CAS Google Scholar - Treutlein, J. et al. A genome-wide association study of alcohol dependence. Arch. Gen. Psychiatry 66, 773–784 (2009).
Article CAS Google Scholar - Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).
Article Google Scholar - Innocenti, F. et al. Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue. PLoS Genet. 7, e1002078 (2011).
Article CAS Google Scholar - Chamorro, A.-J. et al. Systematic review with meta-analysis: the I148M variant of patatin-like phospholipase domain–containing 3 gene (PNPLA3) is significantly associated with alcoholic liver cirrhosis. Aliment. Pharmacol. Ther. 40, 571–581 (2014).
Article CAS Google Scholar - Salameh, H. et al. PNPLA3 gene polymorphism is associated with predisposition to and severity of alcoholic liver disease. Am. J. Gastroenterol. 110, 846–856 (2015).
Article CAS Google Scholar - Kozlitina, J. et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 46, 352–356 (2014).
Article CAS Google Scholar - Patin, E. et al. Genome-wide association study identifies variants associated with progression of liver fibrosis from HCV infection. Gastroenterology 143, 1244–1252 (2012).
Article CAS Google Scholar - Buch, S. et al. A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat. Genet. 39, 995–999 (2007).
Article CAS Google Scholar - Mells, G.F. et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat. Genet. 43, 329–332 (2011).
Article CAS Google Scholar - Melum, E. et al. Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nat. Genet. 43, 17–19 (2011).
Article CAS Google Scholar - Daly, A.K. et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat. Genet. 41, 816–819 (2009).
Article CAS Google Scholar - Bierut, L.J. et al. A genome-wide association study of alcohol dependence. Proc. Natl. Acad. Sci. USA 107, 5082–5087 (2010).
Article CAS Google Scholar - Han, S. et al. Integrating GWASs and human protein interaction networks identifies a gene subnetwork underlying alcohol dependence. Am. J. Hum. Genet. 93, 1027–1034 (2013).
Article CAS Google Scholar - Treutlein, J. et al. Genome-wide association study of alcohol dependence. Arch. Gen. Psychiatry 66, 773–784 (2009).
Article CAS Google Scholar - Edenberg, H.J. & Foroud, T. Genetics and alcoholism. Nat. Rev. Gastroenterol. Hepatol. 10, 487–494 (2013).
Article CAS Google Scholar - Zintzaras, E., Stefanidis, I., Santos, M. & Vidal, F. Do alcohol-metabolizing enzyme gene polymorphisms increase the risk of alcoholism and alcoholic liver disease? Hepatology 43, 352–361 (2006).
Article CAS Google Scholar - He, S. et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem. 285, 6706–6715 (2010).
Article CAS Google Scholar - Gijón, M.A., Riekhof, W.R., Zarini, S., Murphy, R.C. & Voelker, D.R. Lysophospholipid acyltransferases and arachidonate recycling in human neutrophils. J. Biol. Chem. 283, 30235–30245 (2008).
Article Google Scholar - Yamashita, A. et al. Reverse reaction of lysophosphatidylinositol acyltransferase. Functional reconstitution of coenzyme A–dependent transacylation system. J. Biol. Chem. 278, 30382–30393 (2003).
Article CAS Google Scholar - Moreno-Navarrete, J.M. et al. The l-α-lysophosphatidylinositol/GPR55 system and its potential role in human obesity. Diabetes 61, 281–291 (2012).
Article CAS Google Scholar - Tam, J. et al. Endocannabinoids in liver disease. Hepatology 53, 346–355 (2011).
Article CAS Google Scholar - Patsenker, E. et al. Cannabinoid receptor type I modulates alcohol-induced liver fibrosis. Mol. Med. 17, 1285–1294 (2011).
Article CAS Google Scholar - Liu, Y.-L. et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 4309 (2014).
Article CAS Google Scholar - Dongiovanni, P. et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 61, 506–514 (2015).
Article CAS Google Scholar - Speliotes, E.K. et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 7, e1001324 (2011).
Article CAS Google Scholar - Nischalke, H.D. et al. A common polymorphism in the NCAN gene is associated with hepatocellular carcinoma in alcoholic liver disease. J. Hepatol. 61, 1073–1079 (2014).
Article CAS Google Scholar - Di Martino, V., Sheppard, F. & Vanlemmens, C. Early liver transplantation for severe alcoholic hepatitis. N. Engl. J. Med. 366, 478–479 (2012).
CAS PubMed Google Scholar - Vanlemmens, C. et al. Immediate listing for liver transplantation versus standard care for Child-Pugh stage B alcoholic cirrhosis: a randomized trial. Ann. Intern. Med. 150, 153–161 (2009).
Article Google Scholar - Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).
Article CAS Google Scholar - Higgins, J.P.T. & Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).
Article Google Scholar - Way, M. et al. Genetic variants in or near ADH1B and ADH1C affect susceptibility to alcohol dependence in a British and Irish population. Addict Biol. 20, 594–604 (2015).
Article CAS Google Scholar - Trépo, E. et al. Marked 25-hydroxyvitamin D deficiency is associated with poor prognosis in patients with alcoholic liver disease. J. Hepatol. 59, 344–350 (2013).
Article Google Scholar - Ishak, K.G., Zimmerman, H.J. & Ray, M.B. Alcoholic liver disease: pathologic, pathogenetic and clinical aspects. Alcohol. Clin. Exp. Res. 15, 45–66 (1991).
Article CAS Google Scholar - Nguyen-Khac, E. et al. Assessment of asymptomatic liver fibrosis in alcoholic patients using fibroscan: prospective comparison with seven non-invasive laboratory tests. Aliment. Pharmacol. Ther. 28, 1188–1198 (2008).
Article CAS Google Scholar - Browning, B.L. & Yu, Z. Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces false-positive associations for genome-wide association studies. Am. J. Hum. Genet. 85, 847–861 (2009).
Article CAS Google Scholar - Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
Article CAS Google Scholar - Roshyara, N.R. & Scholz, M. fcGENE: a versatile tool for processing and transforming SNP datasets. PLoS ONE 9, e97589 (2014).
Article Google Scholar - Sinnott, J.A. & Kraft, P. Artifact due to differential error when cases and controls are imputed from different platforms. Hum. Genet. 131, 111–119 (2012).
Article Google Scholar - Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).
Acknowledgements
This study was supported by the German Ministry of Education and Research through the Virtual Liver Network (to J.H.), the PopGen 2.0 network biobank (grant 01EY1103) and institutional funds from the medical faculties of TU Dresden and Christian Albrechts University Kiel and by Swiss National Funds (grant 310030_138747 to F.S.). The Community Medicine Research network of the University of Greifswald, Germany, is funded by the Federal Ministry of Education and Research, the Ministry of Cultural Affairs and the Social Ministry of the Federal State of Mecklenburg–West Pomerania. M.M.L. and J.M. were supported by the Federal Ministry of Education and Research (BMBF GANI-MED 03152061A and BMBF 0314107), the European Union (EU-FP-7: EPC-TM and EU-FP-7-REGPOT-2010-1) and the EFRE–State Ministry of Economics (V-630-S-150-2012/132/133). S.C., M.M.N. and M. Rietschel were supported by the German Federal Ministry of Education and Research (BMBF) through the Integrated Networks IntegraMent and Sysmed Alcohol under the auspices of the e:Med Programme (grant 01ZX1314A to M.M.N. and S.C. and grant 01ZX1311A to M.M.N. and M. Rietschel). M.M.N. is a member of the DFG (Deutsche Forschungsgemeinschaft)-funded Excellence Cluster ImmunoSensation. Research by H.D.N. related to this project was funded by the Deutsche Krebshilfe (107865). The work of A.F. and D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept (SysInflame grant 01ZX1306A). This project received infrastructure support from DFG Excellence Cluster 306, 'Inflammation at Interfaces'. A.F. receives an endowment professorship from the Foundation for Experimental Medicine (Zurich, Switzerland). The UK research effort was funded by a PhD studentship award jointly funded by University College London and an anonymous donor. We thank colleagues from the following centers for obtaining samples from alcohol-dependent cases for genotyping: the Bexley Substance Misuse Service, South London and Maudsley National Health Service (NHS) Trust; the East Hertfordshire Community Drug Action Team; the Max Glatt Unit, Southall; Renfrew and Inverclyde Alcohol Services, Strathclyde; the Newcastle North Tyneside Drug and Alcohol Service, Tyne and Wear; and the Acute Admissions Unit and the Centre for Hepatology at the Royal Free Hospital, London. We also thank colleagues associated with the National Institute for Health Research (NIHR) Mental Health Research Network for their assistance in identifying cases, obtaining consent and collecting samples at the following NHS trusts: Sandwell Mental Health and Social Care; Northamptonshire Healthcare; Avon and Wiltshire Mental Health Partnership, Sheffield Health and Social Care; Tees Esk and Wear Valleys; Lincolnshire Partnership; Nottinghamshire Healthcare; Central and North West London; South Staffordshire and Shropshire Healthcare; Coventry and Warwickshire; and Dudley and Walsall Mental Health Partnership. We are grateful to J. Saini, K. Ruparelia, S. Montagnese, R. Kandaswamy, A. Jarram, G. Quadri and N. O'Brien for assisting with the collection and processing of samples and DNA extraction.
The Belgian research effort was supported by the Belgian Medical Genomics Initiative (BeMGI) funded by the phase VII Interuniversity Attraction Poles (IAP) program of the Belgian Federal Science Policy Office (BELSPO) and the Fund for Scientific Research–FNRS (F.R.S.-FNRS). E.T. is a Postdoctoral Researcher of the F.R.S.-FNRS, and D.F. is a Research Director of the F.R.S.-FNRS. We are grateful to O. Lemoine, D. Degré, A. Lemmers and M. Amrani for identifying cases and controls, obtaining consent and collecting samples at CUB Hôpital Erasme, Université Libre de Bruxelles. We also thank E. Quertinmont at the Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, for his help with the collection and processing of samples and DNA extraction.
We are also grateful to the Center for Information Services and High-Performance Computing (ZIH) at TU Dresden where the computations were performed on a PC cluster.
Author information
Author notes
- Stephan Buch, Felix Stickel and Eric Trépo: These authors contributed equally to this work.
- Denis Franchimont, Marsha Y Morgan and Jochen Hampe: These authors jointly supervised this work.
Authors and Affiliations
- Medical Department 1, University Hospital Dresden, TU Dresden, Dresden, Germany
Stephan Buch, Alexander Herrmann, Mario Brosch, Renate Schmelz, Stefan Brückner, Sebastian Zeissig, Anna-Magdalena Stephan & Jochen Hampe - Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
Felix Stickel - Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Cliniques Universitaires de Bruxelles (CUB) Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
Eric Trépo, Jacques Devière, Thierry Gustot, Pierre Deltenre, Christophe Moreno & Denis Franchimont - Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
Eric Trépo, Jacques Devière, Thierry Gustot, Christophe Moreno & Denis Franchimont - Division of Medicine, UCL Institute for Liver and Digestive Health, Royal Free Campus, University College London, London, UK
Michael Way & Marsha Y Morgan - Division of Psychiatry, Molecular Psychiatry Laboratory, University College London, London, UK
Michael Way & Andrew McQuillin - Department of Internal Medicine I, University of Bonn, Bonn, Germany
Hans Dieter Nischalke - Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
Jonas Rosendahl & Thomas Berg - Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
Monika Ridinger & Norbert Wodarz - Psychiatric Health Care Aargau, Psychiatrische Dienste Aargau, Windisch, Switzerland.,
Monika Ridinger - Central Institute of Mental Health, University of Heidelberg, Faculty of Medicine Mannheim, Mannheim, Germany
Marcella Rietschel, Josef Frank & Falk Kiefer - Department of Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
Stefan Schreiber - Institute of Epidemiology and Biobank PopGen, Christian Albrechts University Kiel, Kiel, Germany
Wolfgang Lieb - Psychiatric Hospital, Ludwig Maximilians University, Munich, Germany
Michael Soyka - Department of Visceral Surgery and Medicine, Inselspital Bern, Bern, Switzerland
Nasser Semmo - Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Private University of Salzburg, Salzburg, Austria
Elmar Aigner & Christian Datz - Centre Hospitalier Le Domaine, Université Libre de Bruxelles, Braine-l'Alleud, Belgium
Nicolas Clumeck - Department of Gastroenterology, University Hospital Frankfurt, Frankfurt, Germany
Christoph Sarrazin - Department of Medicine II, Saarland University Hospital, Homburg, Germany
Frank Lammert - Service d'Hépato-Gastroentérologie, Hôpital de Jolimont, Haine-Saint-Paul, Belgium
Pierre Deltenre - Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
Pierre Deltenre - Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
Henry Völzke - Department of Internal Medicine A, University Medicine Greifswald, Greifswald, Germany
Markus M Lerch & Julia Mayerle - Department of Clinical Toxicology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
Florian Eyer - Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,
Clemens Schafmayer - Department of Biomedicine, University Hospital Basel, Basel, Switzerland
Sven Cichon - Institute of Human Genetics, University of Bonn, Bonn, Germany
Markus M Nöthen - Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
Markus M Nöthen - Cologne Center for Genomics, University of Cologne, Cologne, Germany
Michael Nothnagel - Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
David Ellinghaus & Andre Franke - Fritz Lipmann Institute of Age Research (FLI), Jena, Germany
Klaus Huse - Department of Internal Medicine 1, University Hospital Erlangen, Erlangen, Germany
Steffen Zopf - Department of Internal Medicine 1, University Hospital Regensburg, Regensburg, Germany
Claus Hellerbrand
Authors
- Stephan Buch
- Felix Stickel
- Eric Trépo
- Michael Way
- Alexander Herrmann
- Hans Dieter Nischalke
- Mario Brosch
- Jonas Rosendahl
- Thomas Berg
- Monika Ridinger
- Marcella Rietschel
- Andrew McQuillin
- Josef Frank
- Falk Kiefer
- Stefan Schreiber
- Wolfgang Lieb
- Michael Soyka
- Nasser Semmo
- Elmar Aigner
- Christian Datz
- Renate Schmelz
- Stefan Brückner
- Sebastian Zeissig
- Anna-Magdalena Stephan
- Norbert Wodarz
- Jacques Devière
- Nicolas Clumeck
- Christoph Sarrazin
- Frank Lammert
- Thierry Gustot
- Pierre Deltenre
- Henry Völzke
- Markus M Lerch
- Julia Mayerle
- Florian Eyer
- Clemens Schafmayer
- Sven Cichon
- Markus M Nöthen
- Michael Nothnagel
- David Ellinghaus
- Klaus Huse
- Andre Franke
- Steffen Zopf
- Claus Hellerbrand
- Christophe Moreno
- Denis Franchimont
- Marsha Y Morgan
- Jochen Hampe
Contributions
S. Buch performed genotyping, meta-analysis and in silico analysis, and drafted and revised the manuscript. F.S. conceptualized the study, recruited subjects, and wrote and revised the manuscript. E.T. recruited subjects, validated the study, provided replication data, and wrote and revised the manuscript. M.W. recruited subjects, performed genotyping for the validation study and revised the manuscript. A.H. performed bioinformatics work. H.D.N. recruited and phenotyped subjects. M.B. performed expression analysis. J.R. and T.B. recruited subjects. M. Ridinger, M. Rietschel, A.M., J.F. and F.K. recruited subjects and performed phenotyping and recruitment of alcoholic controls. S.S. provided technical support and critically revised the manuscript. W.L. helped with population genetic statistics. M.S. recruited subjects and phenotyped alcoholic controls. N.S., E.A., C.D., R.S., S. Brückner, S. Zeissig and A.-M.S. recruited subjects. N.W. recruited subjects and performed phenotyping of alcoholic controls. J.D., N.C., C. Sarrazin, F.L., T.G. and P.D. recruited and phenotyped subjects. H.V. recruited the population cohort. M.M.L., J.M., F.E. and C. Schafmayer recruited and phenotyped subjects. S.C. and M.M.N. performed phenotyping and recruitment of alcoholic controls. M.N. supervised and reviewed statistical analysis. D.E. assisted with bioinformatics analysis. K.H. performed expression analysis. A.F. gave conceptual advice and bioinformatics support. S. Zopf, C.H. and C.M. recruited subjects. D.F. and M.Y.M. recruited subjects and drafted and critically revised the manuscript. J.H. conceptualized the study and analytical design, and drafted and revised the manuscript. All authors critically revised and contributed to the final manuscript.
Corresponding author
Correspondence toFelix Stickel.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Integrated supplementary information
Supplementary Figure 4 Fine-mapping analysis of the TM6SF2 association signals.
The –log10 (P values) are plotted against SNP genomic position based on NCBI Build 37. The known coding variant of likely functional significance, rs58542926 is highlighted in purple. The squares denote genotyped SNPs; the circles denote imputed SNPs (using 1000 Genomes Project–based imputation). SNPs are colored to reflect correlation with the most significant SNP, with red denoting the highest LD (_r_2 >0.8) to the lead SNP. Estimated recombination rates from 1000 Genomes Project (hg19/genomes March 2012 EUR) are plotted in blue to reflect the local LD structure. Gene annotations were obtained from the UCSC Genome Browser. The plot was generated using LocusZoom.
Supplementary Figure 5 Tissue expression of MBOAT7 and TMC4 mRNA.
Expression was tested by PCR in the human cDNA tissue panel from Takara Clontech (636742 and 636743) using transcript-specific primer pairs (MBOAT7: 5′-TCCTTGTGTCTTTCGCTCC-3′ and 5′-TACACACGGTGACCTGTCA-3′; TMC4: 5′-TGAGACCACCCAGAATTTCC-3′ and 5′-CTAGGCTTACAATGGGCCTG-3′). MBOAT7 shows a ubiquitous expression pattern in the tissues tested, albeit with lower expression in skeletal muscle. Expression of TMC4 is more selective, with no expression detected in brain or skeletal muscle.
Supplementary Figure 6 Genotype-specific relative transcript abundance in liver tissue from patients with alcohol-related cirrhosis.
No significant change in transcript abundance was seen for TMC4 across genotypes, whereas a significant increase in transcript abundance was detected for MBOAT7 in the homozygous mutant genotype (Mann-Whitney U test P = 0.0087).
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–6 and Supplementary Tables 2, 3 and 5–7. (PDF 887 kb)
Supplementary Table 1: Results of the primary GWAS meta-analysis (Germany/UK).
Results of the GWAS meta-analysis of 712 cases with alcohol-related cirrhosis and 1,466 controls. Variants that entered replication genotyping are marked "SNP1" to "SNP10". SNPs are ranked by combined P value, and data are provided for the top variants through SNP10. (XLSX 534 kb)
Supplementary Table 4: Results of the secondary GWAS meta-analysis (Germany/UK) adjusted for sex, age, BMI and type 2 diabetes status.
Results of the GWAS meta-analysis adjusted for age, sex, BMI and type 2 diabetes status. Variants that entered replication genotyping are marked "SNP1" to "SNP10". SNPs are ranked by combined P value, and data are provided for the top variants through SNP10. Adjusted meta-analysis results for the replicating variants of the primary analysis are as follows: TM6SF2 (rs10401969), _P_meta = 0.000667, ORmeta = 1.87 (1.30–2.69); MBOAT7 (rs626283), _P_meta = 0.0173, ORmeta = 1.28 (1.04–1.56). These rank below SNP10 in this analysis. (XLSX 153 kb)
Rights and permissions
About this article
Cite this article
Buch, S., Stickel, F., Trépo, E. et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis.Nat Genet 47, 1443–1448 (2015). https://doi.org/10.1038/ng.3417
- Received: 02 June 2015
- Accepted: 14 September 2015
- Published: 19 October 2015
- Issue date: December 2015
- DOI: https://doi.org/10.1038/ng.3417