Principal components analysis corrects for stratification in genome-wide association studies (original) (raw)
Lander, E.S. & Schork, N.J. Genetic dissection of complex traits. Science265, 2037–2048 (1994). ArticleCASPubMed Google Scholar
Lohmueller, K. et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet.33, 177–182 (2003). ArticleCASPubMed Google Scholar
Freedman, M. et al. Assessing the impact of population stratification on genetic association studies. Nat. Genet.36, 388–393 (2004). ArticleCASPubMed Google Scholar
Marchini, J. et al. The effects of human population structure on large genetic association studies. Nat. Genet.36, 512–517 (2004). ArticleCASPubMed Google Scholar
Helgason, A. et al. An Icelandic example of the impact of population structure on association studies. Nat. Genet.37, 90–95 (2005). ArticleCASPubMed Google Scholar
Campbell, C.D. et al. Demonstrating stratification in a European American population. Nat. Genet.37, 868–872 (2005). ArticleCASPubMed Google Scholar
Hirschhorn, J.N. & Daly, M.J. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet.6, 95–108 (2005). ArticleCASPubMed Google Scholar
Thomas, D.C. et al. Recent developments in genomewide association scans: a workshop summary and review. Am. J. Hum. Genet.77, 337–345 (2005). ArticleCASPubMedPubMed Central Google Scholar
Reich, D. & Goldstein, D. Detecting association in a case-control study while allowing for population stratification. Genet. Epidemiol.20, 4–16 (2001). ArticleCASPubMed Google Scholar
Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics55, 997–1004 (1999). ArticleCASPubMed Google Scholar
Satten, G. et al. Accounting for unmeasured population substructure in case-control studies of genetic association using a novel latent-class model. Am. J. Hum. Genet.68, 466–477 (2001). ArticleCASPubMedPubMed Central Google Scholar
Setakis, E., Stirnadel, H. & Balding, D.J. Logistic regression protects against population structure in genetic association studies. Genome Res.16, 290–296 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pritchard, J.K. et al. Inference of population structure using multilocus genotype data. Genetics155, 945–959 (2000). CASPubMedPubMed Central Google Scholar
Jackson, J.E. A User's Guide to Principal Components (John Wiley & Sons, New York, 2003). Google Scholar
Menozzi, P., Piazza, A. & Cavalli-Sforza, L. Synthetic maps of human gene frequencies in Europeans. Science201, 786–792 (1978). ArticleCASPubMed Google Scholar
Cavalli-Sforza, L.L., Menozzi, P. & Piazza, A. Demic expansions and human evolution. Science259, 639–646 (1993). ArticleCASPubMed Google Scholar
Johnstone, I. On the distribution of the largest eigenvalue in principal components analysis. Ann. Stat.29, 295–327 (2001). Article Google Scholar
Soshnikov, A. A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. Stat. Phys.108, 1033–1056 (2002). Article Google Scholar
Baik, J., Ben Arous, G. & Peche, S. Phase transition of the largest eigenvalue for non-null complex sample covariance matrices. Ann. Probab.33, 1643–1697 (2005). Article Google Scholar
Rosenberg, N.A. et al. Clines, clusters, and the effect of study design on the inference of human population structure. PLoS Genetics1, 660–671 (2005). ArticleCAS Google Scholar
Pritchard, J.K. & Donnelly, P. Case-control studies of association in structured or admixed populations. Theor. Popul. Biol.60, 227–237 (2001). ArticleCASPubMed Google Scholar
Balding, D.J. & Nichols, R.A. A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identify and paternity. Genetica96, 3–12 (1995). ArticleCASPubMed Google Scholar
Cavalli-Sforza, L.L., Menozzi, P. & Piazza, A. The History and Geography of Human Genes (Princeton Univ. Press, Princeton, New Jersey, 1994). Google Scholar
Nicholson, G. et al. Assessing population differentiation and isolation from single-nucleotide polymorphism data. J. R. Statist. Soc. (B)64, 695–715 (2002). Article Google Scholar
Bersaglieri, T. et al. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet.74, 1111–1120 (2004). ArticleCASPubMedPubMed Central Google Scholar
Armitage, P. Tests for linear trends in proportions and frequencies. Biometrics11, 375–386 (1955). Article Google Scholar
Enattah, N.S. et al. Identification of a variant associated with adult-type hypolactasia. Nat. Genet.30, 233–237 (2002). ArticleCASPubMed Google Scholar
The International HapMap Consortium. A haplotype map of the human genome. Nature437, 1299–1320 (2005).
Rosati, G. The prevalence of multiple sclerosis in the world: an update. Neurol. Sci.22, 117–139 (2001). ArticleCASPubMed Google Scholar
Panza, F. et al. Shifts in angiotensin I converting enzyme insertion allele frequency across Europe: implications for Alzheimer's disease risk. J. Neurol. Neurosurg. Psychiatry74, 1159–1161 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bernardi, F. et al. Contribution of factor VII genotype to activated FVII levels. Differences in genotype frequencies between northern and southern European populations. Arterioscler. Thromb. Vasc. Biol.17, 2548–2553 (1997). ArticleCASPubMed Google Scholar
Angastiniotis, M. & Modell, B. Global epidemiology of hemoglobin disorders. Ann. NY Acad. Sci.850, 251–269 (1998). ArticleCASPubMed Google Scholar
Clayton, D.G. et al. Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat. Genet.37, 1243–1246 (2005). ArticleCASPubMed Google Scholar