Early neonatal death in mice homozygous for a null allele of the insulin receptor gene (original) (raw)

References

  1. Kahn, C.R., Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43, 1066–1084 (1994).
    Article CAS Google Scholar
  2. Taylor, S.I., Lilly Lecture: molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin receptor gene. Diabetes 41, 1473–1490 (1992).
    Article CAS Google Scholar
  3. Accili, D. Molecular defects of the insulin receptor gene. Diab. Metab. Reviews. 1, 47–62 (1995).
    Article Google Scholar
  4. Tamemoto, H. et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372, 182–186 (1994).
    Article CAS Google Scholar
  5. Araki, E. et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372, 186–190 (1994).
    Article CAS Google Scholar
  6. Wertheimer, E., Lu, S.P., Backeljauw, P.P., Davenport, M.L. & Taylor, S.I. Homozygous deletion of the human insulin receptor gene results in leprechaunism. Nature Genet. 5, 71–73 (1993).
    Article CAS Google Scholar
  7. Krook, A., Brueton, L. & O'Rahilly, S. Homozygous nonsense mutation in the insulin receptor gene in infant with leprechaunism. Lancet 342, 277–278 (1993).
    Article CAS Google Scholar
  8. Hone, J. et al. Homozygosity for a null allele of the insulin receptor gene in a patient with leprechaunism. Hum. Mut. 6, 17–22 (1995).
    Article CAS Google Scholar
  9. Jospe, N., Kaplowitz, P.B. & Furlanetto, R.W. Homozygous mutation in the insulin receptor β-subunit of a patient with leprechaunism altering arginine 786 to a stop codon. Abstracts of the 75th Annual Meeting of the Endocrine Society,453 (1993).
  10. Garofalo, R.S. & Rosen, O.M. Insulin and insulinlike growth factor I (IGF-1) receptors during central nervous system development: expression of two immunologically distinct IGF-1 receptor β-subunits. Molec. Cell. Biol. 9, 2806–2817 (1989).
    Article CAS Google Scholar
  11. Caro, J.F. et al. Insulin-like growth factor I binding in hepatocytes from human liver, human hepatoma, and normal, regenerating, and fetal rat liver. J. Clin. Invest. 81, 976–981 (1988).
    Article CAS Google Scholar
  12. Morgan, D.O., Jarnagin, K. & Roth, R.A. Purification and characterization of the receptor for insulin-like growth factor I. Biochemistry 25, 5560–5564 (1986).
    Article CAS Google Scholar
  13. Sun, X.-J. et al. Role of IRS-2 in insulin and cytokine signalling. Nature 377, 173–177 (1995).
    Article CAS Google Scholar
  14. Tobe, K., Tamemoto, H., Yamauchi, Y., Yazaki, Y. & Kadowaki, T. Identification of a 190-kDa protein as a novel substrate for the insulin receptor kinase functionally similar to insulin receptor substrate-1. J. Biol. Chem. 270, 5698–5701 (1995).
    Article CAS Google Scholar
  15. Moses, A.C. & Tsuzaki, S. Is insulin a growth factor? In Insulin-like growth factors: molecular and cellular aspects. (D. LeRoith, ed.) 245–263 (CRC Press, Boca Raton, 1991).
    Google Scholar
  16. Schultz, G.A., Hogan, A., Watson, A.J., Smith, R.M. & Heyner, S. Insulin, insulin-like growth factors and glucose transporters: temporal patterns of gene expression in early murine and bovine embryos. Reproof. Fertil. Dev. 4, 361–371 (1992).
    Article CAS Google Scholar
  17. Liu, J.-R., Baker, J., Perkins, A.S., Robertson, E.J. & Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor (lgf-1) and type 1 Igf receptor (Igf1r). Cell 75, 59–72 (1993).
    CAS Google Scholar
  18. Kaku, K., Fiedorek, F.T. Jr., Province, M. & Permutt, M.A. Genetic analysis of glucose tolerance in inbred mouse strains. Diabetes 37, 707–713 (1988).
    Article CAS Google Scholar
  19. Flores-Riveros, J.R., Sibley, E., Kastelic, T. & Lane, M.D. Substrate phosphorylation catalyzed by the insulin receptor tyrosine kinase. Kinetic correlation to autophosphorylation of specific sites in the beta subunit. J. Biol. Chem. 264, 21557–21572 (1989).
    CAS PubMed Google Scholar
  20. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).
    Article CAS Google Scholar
  21. Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).
    Article CAS Google Scholar
  22. Accili, D. & Taylor, S.I. Targeted inactivation of the insulin receptor gene in mouse 3T3-L1 fatty fibroblasts via homologous recombination. Proc. Natl. Acad. Sci. USA 88, 4708–4712 (1991).
    Article CAS Google Scholar
  23. Drago, J. et al. Altered striatal function in a mutant mouse lacking D1A dopamine receptors. Proc. Natl. Acad. Sci. USA 91, 12564–12568 (1994).
    Article CAS Google Scholar
  24. Accili, D., Mosthaf, L., Ullrich, A. & Taylor, S.I. A mutation in the extracellular domain of the insulin receptor impairs the ability of insulin to stimulate receptor autophosphorylation. J. Biol. Chem. 266, 434–439 (1991).
    CAS PubMed Google Scholar
  25. Wada, J. et al. Cloning of cDNA for the alpha subunit of mouse insulin-like growth factor I receptor and the role of the receptor in metanephric development. Proc. Natl. Acad. Sci. USA 90, 10360–10364 (1993).
    Article CAS Google Scholar
  26. Hedo, J.A., Harrison, L.C. & Roth, J. Binding of insulin receptors to lectins: evidence for common carbohydrate determinants on several membrane receptors. Biochemistry 20, 3385–3393 (1981).
    Article CAS Google Scholar
  27. Frattali, A.L., Treadway, J.L. & Pessin, J.E. Transmembrane signaling by the human insulin receptor kinase. Relationship between intramolecular beta subunit trans- and cis-autophosphorylation and substrate kinase activation. J. Biol. Chem. 267, 19521–19528 (1992).
    CAS PubMed Google Scholar
  28. Chin, J.E., Tavare, J.M., Ellis, L. & Roth, R.A. Evidence for hybrid rodent and human insulin receptors in transfected cells. J. Biol. Chem. 266, 15587–15590 (1991).
    CAS PubMed Google Scholar
  29. Maegawa, H. et al. Insulin receptors with defective tyrosine kinase inhibit normal receptor function at the level of substrate phosphorylation. J. Biol. Chem. 263, 12629–12637 (1988).
    CAS PubMed Google Scholar

Download references