Renal disease susceptibility and hypertension are under independent genetic control in the fawn-hooded rat (original) (raw)

References

  1. Roccella, E.J. National high blood pressure education program working group report on hypertension and chronic renal failure. Arch. Int. Med. 51, 1280–1287 (1991).
    Google Scholar
  2. USRDS 1994 Annual Data Report, IV Incidence and causes of treated ESRD. Am. J. Kid Dis. 24 (suppl2), S48–S56 (1994).
  3. Freedman, B.I., Iskandar, S.S., Appel, R.G. The link between hypertension and nephrosclerosis. Am. J. Kid. Dis. 25, 207–221 (1995).
    Article CAS PubMed Google Scholar
  4. Brazy, P.C., Stead, W.W., Fitzwilliam, J.F. Progression to renal insufficiency: Role of blood pressure. Kidney Int. 35, 670–674 (1989).
    Article CAS PubMed Google Scholar
  5. Shulman, N.B. et al. Prognostic value of serum creatinine and effect of treatment of hypertension on renal failure. Hypertension. 13, 180–193 (1989).
    Article Google Scholar
  6. Perneger, T.V., Klag, M.J., Feldman, H.I. & Whetton, R.K. Projections of hypertension-related renal disease in middle-aged residents of the United States. J. Am. Med. Assoc. 269, 1272–1277 (1993).
    Article CAS Google Scholar
  7. Brancati, F.L., Whetton, R.K., Whittle, J.C & Klag, M.J. Epidemiologic analysis of existing data to investigate hypertensive renal disease: an example from the Maryland End-Stage Renal Disease Registry. Am. J. Kid. Dis. 21, 815–824 (1993).
    Article Google Scholar
  8. Jones, C.A. & L Kidney disease and hypertension in blacks: scope of the problem. Am. J. Kid. Dis. 21, S6–S9 (1993).
    Article Google Scholar
  9. McClellan, W. Hypertensive end-stage renal disease in blacks: the role of end-stage renal disease surveillance. Am. J. Kid. Dis. 21, S25–S30 (1993).
    Article Google Scholar
  10. Freedman, B.I., Spray, B.J., Tuttle, A.B. & Buckalew, V.M. The familial risk of end-stage renal disease in African Americans. Am. J. Kid. Dis. 21, 387–393 (1993).
    Article CAS PubMed Google Scholar
  11. Raymond, S.L. & Dodds, W.J. Characterization of the fawn-hooded rat as a model for hemostatic studies. Thrombos. Diath. Haemostas. 33, 361–369 (1975).
    Article CAS Google Scholar
  12. Prieur, D.L. & Meyers, K.M. Genetics of the fawn-hooded rat strain. J. Hereof. 75, 349–352 (1984).
    Article CAS Google Scholar
  13. Gilboa, N., Rudofsky, U. & Magro, A. Urinary and renal kallikrein in hypertensive fawn-hooded (FH/Wjd) rats. Lab. Invest. 50, 72–78 (1984).
    CAS PubMed Google Scholar
  14. Kuijpers, M.H. & de Jong, J.W. Relationship between blood pressure level, renal histopathological lesions and plasma renin activity in fawn-hooded rats. Br. J. Exp. Pathol. 68, 179–187 (1987).
    CAS PubMed PubMed Central Google Scholar
  15. Simons, J.L. et al. Pathogenesis of glomerular injury in the fawn-hooded rat: Early glomerular capillary hypertension predicts glomerular sclerosis. J. Am. Soc. Nephrol. 3, 1775–1782 (1993).
    CAS PubMed Google Scholar
  16. Kreisberg, J.I. & Karnovsky, M.J. Focal glomerular sclerosis in the fawn-hooded rat. Am. J. Pathol. 92, 637–652 (1978).
    CAS PubMed PubMed Central Google Scholar
  17. Kuijpers, M.H. & Gruys, E. Spontaneous hypertension and hypertensive renal disease in the fawn-hooded rat. Br. J. Exp. Pathol. 65, 181–190 (1984).
    CAS PubMed PubMed Central Google Scholar
  18. The Laboratory Rat: Biology and Disease. (Baker, H.J., Lindsey, J.R., Weisbroth, S.H., eds) Vol. 1,88–91 (Academic Press, San Diego, 1979).
  19. Simons, J.L. et al. Modulation of glomerular hypertension defines susceptibility to progressive glomerular injury. Kidney Int. 46, 396–404 (1994).
    Article CAS PubMed Google Scholar
  20. Westenend, P.J., Nooyen, Y.A., van der Krogt, J.A., van Brummelen, P. & Weening, J.J. The effect of a converting enzyme inhibitor upon renal damage in spontaneously hypertensive Fawn Hooded rats. J. Hypertens. 10, 417–422 (1992).
    Article CAS PubMed Google Scholar
  21. Provoost, A.P., Sterk, J.T., Verseput, G.H., Weening, J.J. Simultaneous reduction of blood pressure and proteinuria by chronic angiotension converting enzyme (ACE) inhibition in hypertensive fawn-hooded (FHH) rats. Kidney Int. 46, 1464 (1994).
    Google Scholar
  22. Dietrich, W. et al. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75, 631–639 (1993).
    Article CAS PubMed Google Scholar
  23. Jacob, H.J. et al. A genetic linkage map of the laboratory rat, Rattus Novegicus. Nature Genet. 9, 63–69 (1995).
    Google Scholar
  24. Iwai, N. & Inagami, T. Isolation of preferentially expressed genes in the kidneys of hypertensive rats. Hypertension. 17, 161–169 (1991).
    Article CAS PubMed Google Scholar
  25. Jacob, H.J. et al. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67, 213–224 (1991).
    Article CAS PubMed Google Scholar
  26. Hilbert, P. et al. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature. 353, 521–529 (1991).
    Article CAS PubMed Google Scholar
  27. Cicila, G.T. et al. Linkage of 11 -β hydroxylase mutations with altered steriod biosynthesis and blood pressure in the Dahl rat. Nature Genet. 3, 346–353 (1993).
    Article CAS PubMed Google Scholar
  28. Dubay, C. et al. Genetic determinates of diastolic and pulse pressure map to different loci in Lyon hypertensive rats. Nature Genet. 3, 354–357 (1993).
    Article CAS PubMed Google Scholar
  29. Lindpaintner, K. et al. Molecular genetics of the SA-gene: cosegregation with hypertension and mapping to rat chromosome 1. J. Hypertens. 11, 19–23 (1993).
    Article CAS PubMed Google Scholar
  30. Nabika, T., Nara, Y., Ikeda, K., Endo, J. & Yamori, Y. A new genetic locus cosegregating with blood pressure in F2 progeny obtained from stroke prone spontaneously hypertensive rats and Wistar-Kyoto rats. J. Hypertens. 11, 13–18 (1993).
    Article CAS PubMed Google Scholar
  31. Nara, Y. et al. Basal high blood pressure cosegregates with the loci on chromosome 1 in the F2 generation from crosses between normotensive Wistar Kyoto rats and stroke-prone spontaneously hypertensive rats. Biochem. Biophys. Res. Commun. 194, 1344–1351 (1993).
    CAS Google Scholar
  32. Samani, N.J. et al. A gene differentially expressed in the kidney of the spontaneously hypertensive rat cosegregates with increased blood pressure. J. Clin. Invest. 92, 1099–1103 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  33. Harris, E.L., Dene, H. & Rapp, J.R. SA gene and blood pressure cosegregation using Dahl salt-sensitive rats. Am. J. Hypertens. 6, 330–334 (1993).
    Article CAS PubMed Google Scholar
  34. Ferguson, R., Grim, C.E. & Opgenorth, T.J. A familial risk of chronic renal failure among blacks on dialysis?. J. Clin. Epidemiol. 41, 1189–1196 (1988).
    Article CAS PubMed Google Scholar
  35. Berty, R.M., Zeigler, Z.R. & Bruns, F.J. Potentiation of uremic bleeding by hereditary storage pool disease. Am. J. Kid. Dis. 19, 326–330 (1992).
    Article CAS PubMed Google Scholar
  36. Gawaz, M.R., Bogner, C. & Gurland, H.J. Flow-cytometric analysis of mepacrine-labelled platelets in patients with end-stage renal failure. Hemostasis 23, 284–292 (1993).
    CAS Google Scholar
  37. Michalak, E., Walkowiak, B., Paradowski, M. & Ciemiewski, C.S. The decreased circulating platelet mass and its relation to bleeding time in chronic renal failure. Thromb. Haem. 65, 11–14 (1991).
    Article CAS Google Scholar
  38. Soslau, G. et al. Desmopressin-induced improvement in bleeding times in chronic renal failure patients correlates with platelet serotonin uptake and ATP release. J. Med. Sc. 300, 372–379 (1991).
    Article Google Scholar
  39. Gordge, M.R., Faint, R.W., Rylance, P.B. & Neild, G.H. Platelet function and the bleeding time in progressive renal failure. Thromb. Haemostasis. 60, 83–87 (1989).
    Google Scholar
  40. Morel, L., Rudofsky, U.H., Longmate, J A., Schiffenbauer, J., & Wakeland, E.K. Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity. 1, 219–229 (1994).
    Article CAS PubMed Google Scholar
  41. Iwai, N., Ohmichi, N., Hanai, K., Nakamura, Y. & Kinoshita, M. Human SA gene locus as a candidate locus for essential hypertension. Hypertension. 23, 375–380 (1994).
    Article CAS PubMed Google Scholar
  42. Provoost, A.P. et al. Spontaneous glomerular sclerosis: insights from the fawn-hooded rat. Kidney Int.. 45, S1–S4 (1994).
    Article Google Scholar
  43. Brandis, A., Bianchi, G., Reale, E., Helmchen, U. & Kuhn, K. Age dependent glomerularsclerosis and proteinuria occurring in the rats of Milan Normotensive strain and not in rats of the Milan Hypertensive strain. Lab. Invest. 55, 234–243 (1986).
    CAS PubMed Google Scholar
  44. Hostetter, T.H., Olson, J.L., Rennke, H.G., Venkatachalam, M.A., Brenner, B.M. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am. J. Phystol. 241, F85–F93 (1981).
    CAS Google Scholar
  45. Brenner, B.M., Meyer, T.W. & Hostetter, T.H. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamicalry mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N. Engl. J. Med. 307, 652–659 (1982).
    Article CAS PubMed Google Scholar
  46. Chung, O., Chung, O., Rohmeiss, R., Sooner, G., Strauch, M. & Gretz, N. Renal involvement in spontaneously hypertensive rats. in Rat Models of Chronic Renal Failure (Gretz, N. & Strauch, M., eds). 357–340 (Karger, Basel, 1993).
    Google Scholar
  47. Tschopp, T.B. & Zucker, M.B. Hereditary defect in platelet function in rats. Blood 40, 217–226 (1972).
    CAS PubMed Google Scholar
  48. Provoost, A.P. & DeKeijzer, M.H. The fawn-hooded rat: a model for chronic renal failure. In Experimental and Genetic Models of Chronic Renal Failure(eds. Gretz, N. & Strauch, M.) 100–114 (Karger, Basel, 1993).
    Google Scholar
  49. Fabiny, D.L. & Ertinghausen, G. Automated reaction-rate method determination of serum creatinine with the CentriChem. Clin. Chem. 17, 696–700 (1971).
    CAS PubMed Google Scholar
  50. Talke, H. & Schubert, G.E., Hamstoffbestimmung in Blut and Serum im optischen Test nach Warburg. Klin. Wochenschr. 43, 174–175 (1965).
    Article CAS PubMed Google Scholar
  51. Serikawa, T. et al. Rat gene map using PCR-microsatellites. Genetics 121, 701–721 (1992).
    Google Scholar
  52. Laird, R.W. et al. Simplified mammalian DNA isolation procedure. Nucl. Acids Res. 19, 4293 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  53. Szpirer, J., Levan, G., Thorn, M. & Szpirer, C. Gene mapping in the rat by mouse-rat somatic cell hybridization: synteny of the albumin and alpha-fetoprotein genes and assignment to chromosome 14. Cyfogenef. Cell Genet. 38, 142–149 (1984).
    Article CAS Google Scholar
  54. Lander, E.S. et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1, 174–181 (1987).
    Article CAS PubMed Google Scholar
  55. Lincoln, S.E. & Lander, E.S. Systematic detection of errors in genetic linkage data. Genomics. 14, 604–610 (1992).
    Article CAS PubMed Google Scholar
  56. Lander, E.S. & Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989).
    CAS PubMed PubMed Central Google Scholar

Download references