UBE3A/E6-AP mutations cause Angelman syndrome (original) (raw)

References

  1. Williams, C.A. et al. Angelman syndrome. Curr. Probl. Pediatr. 25, 216–231 (1995).
    Article CAS Google Scholar
  2. Knoll, J.H.M. et al. Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am. J. Med. Genet. 32, 285–290 (1989).
    Article CAS Google Scholar
  3. Malcolm, S. et al. Uniparental paternal disomy in Angelman's syndrome. Lancet 337, 694–697 (1991).
    Article CAS Google Scholar
  4. Buiting, K. et al. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nature Genet. 9, 395–400 (1995).
    Article CAS Google Scholar
  5. Wagstaff, J. et al. Maternal but not paternal transmission of 15q11-13-linked nondeletion Angelman syndrome leads to phenotypic expression. Nature Genet. 1, 291–294 (1992).
    Article CAS Google Scholar
  6. Clayton-Smith, J. . et al. Further evidence for dominant inheritance at the chromosome 15q11-13 locus in familial Angelman syndrome. Am. J. Med. Genet. 44, 256–260 (1992).
    Article CAS Google Scholar
  7. Meijers-Heijboer, E.J. . J. et al. Linkage analysis with chromosome 15q11-13 markers shows genomic imprinting in familial Angelman syndrome. J. Med. Genet. 29, 853–857 (1992).
    Article CAS Google Scholar
  8. Reed, M.L. & Leff, S.E. Maternal imprinting of human SNRPN, 6, 163–167 (1994).
  9. Sutcliffe, J.S. . S. et al. Deletions of a differentially methylated CpG island at the SNRPN 8, 52–58 (1994).
  10. Wevrick, R., Kerns, J.A. & Francke, U. Identification of a novel paternally expressed gene in the Prader-Willi syndrome region. Hum. Molec. Genet.. 3, 1877–1882 (1994).
    Article CAS Google Scholar
  11. Ning, Y. et al. Identification of a novel paternally expressed transcript adjacent to snRPN in the Prader-Willi syndrome critical region. Genome Res. 6, 735–741 (1996).
    Article Google Scholar
  12. Burke, L.W. et al. Familial cryptic translocation resulting in Angelman syndrome: implications for imprinting or location of the Angelman gene? Am. J. Hum. Genet. 58, 777–784 (1996).
    CAS PubMed PubMed Central Google Scholar
  13. Greger, V., Reis, A. & Lalande, M. The critical region for Angelman syndrome lies between D15S122 and D15S113. Am. J. Med. Genet. 53, 396–398 (1994).
    Article CAS Google Scholar
  14. Woodage, T. et al. Physical mapping studies at D15S10: implications for candidate gene identification in the Angelman syndrome/ Prader-Willi syndrome chromosome region of 15q11-q13. Genomics. 19, 170–172 (1994).
    Article CAS Google Scholar
  15. Nakao, M. et al. Imprinting analysis of three genes in the Prader-Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum. Molec. Genet. 3, 309–315 (1994).
    Article CAS Google Scholar
  16. Huibregtse, J.M., Scheffner, M. & Howley, P.M. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol.Cell. Biol. 13, 775–784 (1993).
    Article CAS Google Scholar
  17. Huibregtse, J.M., Scheffner, M., Beaudenon, S. & Howley, P.M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA. 92, 2563–2567 (1995).
    Article CAS Google Scholar
  18. Cooper, D.N. & Krawczak, M. Mechanisms of insertional mutagenesis in human genes causing genetic disease. Hum. Genet. 87, 409–415 (1991).
    CAS Google Scholar
  19. Knoll, J.H.M., Glatt, K.A., Nicholls, R.D., Malcolm, S. & Lalande, M. Chromosome 15 uniparental disomy is not frequent in Angelman syndrome. Am. J. Hum. Genet. 48, 16–21 (1991).
    CAS PubMed PubMed Central Google Scholar
  20. Wagstaff, J., Shugart, Y.Y. & Lalande, M. Linkage analysis in familial Angelman syndrome. Am. J. Hum. Genet. 53, 105–112 (1993).
    CAS PubMed PubMed Central Google Scholar
  21. DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).
    Article CAS Google Scholar
  22. Giddings, S.J., Harman, K.W., Flood, J.F. & Carnaghi, L. R. Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nature Genet. 6, 310–313 (1994).
    Article CAS Google Scholar
  23. Ekstrom, T.J., Cui, H., Li, X. & Ohlsson, R. Promoter-specific IGF2 imprinting status and its plasticity during human liver development. Development 121, 309–316 (1995).
    CAS PubMed Google Scholar
  24. Deltour, L., Montagutelli, X., Guenet, J.-L., Jami, J. & Paldi, A. Tissue- and developmental stage-specific imprinting of the mouse proinsulin gene. Ins2. Dev. Biol. 168, 686–688 (1995).
    Article CAS Google Scholar
  25. Kalscheuer, V.M., Mariman, E.C., Schepens, M.T., Rehder, H. & Ropers, H.-H. The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nature Genet. 5, 74–78 (1993).
    Article CAS Google Scholar
  26. Pearsall, R.S. . S. et al. Absence of imprinting in U2AFBPL, a human homologue of the imprinted mouse gene U2afbp-rs. Biochem. Biophys. Res. Comm. 222, 171–177 (1996).
    Article CAS Google Scholar
  27. Riesewijk, A.M., Schepens, M.T., Mariman, E.M., Ropers, H.-H. & Kalscheuer, V.M., MAS proto-oncogene is not imprinted. Genomics 35, 380–382 (1996).
    Article CAS Google Scholar
  28. Vu, T.H. & Hoffman, A.R. Promoter-specific imprinting of the human insulin-like growth factor-ll gene. Nature 371, 714–717 (1994).
    Article CAS Google Scholar
  29. Chung, W.-Y., Yuan, L., Feng, L., Hensle, T. & Tycko, B. Chromosome 11p15.5 regional imprinting: comparative analysis of KIP2 and H19 in human tissues and Wilms' tumors. Hum. Molec. Genet. 5, 1101–1108 (1996).
    Article CAS Google Scholar
  30. Scheffner, M., Nuber, U. & Huibregtse, J.M. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature. 373, 81–83 (1995).
    Article CAS Google Scholar
  31. Muralidhar, M.G. & Thomas, J.B., The Drosophila bendless gene encodes a neural protein related to ubiquitin-conjugating enzymes. Neuron 11, 253–266 (1993).
    Article CAS Google Scholar
  32. Palombella, V.J., Rando, O.J., Goldberg, A.L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-KB1 precursor protein and the activation of NF-KB. Cell 78, 773–785 (1994).
    Article CAS Google Scholar
  33. Church, D.M., Stotler, C.J., Rutter, J.L., Murrell, J.R., Trofatter, J.A. & Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet. 6, 98–105 (1994).
    Article CAS Google Scholar

Download references