Striking sequence similarity over almost 100 kilobases of human and mouse T–cell receptor DNA (original) (raw)

References

  1. Nadeau, J.H. et al. Comparative map for mice and humans. Mamm. Genome 3, 480–536 (1992).
    Article CAS Google Scholar
  2. O'Brien, S.J. et al. Anchored reference loci for comparative genome mapping in mammals. Nature Genet. 3, 103–112 (1993).
    Article CAS Google Scholar
  3. Li, W.-H. & Graur, D. Fundamentals of Molecular Evolution. 70, 71 (Sinauer Associates, Sunderiand, Massachussetts, 1991).
  4. denDennen, J.T., van Neck, J.W., Cremers, R.P.M., Lubsen, N.H. & Schoenmakers, J.G.G. Nucleotide sequence of the rat g crystallin gene region and comparison with an orthologous human region. Gene 78, 201–213 (1989).
    Article Google Scholar
  5. Collins, F. & Weissman, S.M. The molecular genetics of human hemoglobin. Prog. Nucleic Add Res. molec. Biol. 31, 315–462 (1984).
    Article CAS Google Scholar
  6. Shehee, W.R. et al. Nucleotide sequence of the BALB/C mouse β-globin complex. J. molec. Biol. 205, 41–62 (1989).
    Article CAS Google Scholar
  7. Koop, B.F. et al. The human T-cell receptor TCRAC/TCRDC (Cα/Cδ) region: Organization, sequence and evolution of 97.6 kb of DNA. Genomics 19, 478–493 (1994).
    Article CAS Google Scholar
  8. Koop, B.F. et al. Organization, structure and function of 95 kb spanning the murine T-cell receptor Cα to Cδ region. Genomics 13, 1209–1230 (1992).
    Article CAS Google Scholar
  9. Wilson, R.K. et al. Nucleotide sequence analysis of the 95 kb 3′ terminal region of the murine T-cell receptor α/δ chain locus: strategy and methodology. Genomics 13, 1198–1208 (1992).
    Article CAS Google Scholar
  10. Davis, M.M. T cell receptor gene diversity and selection. A. Rev. Biochem. 59, 475–496 (1990).
    Article CAS Google Scholar
  11. Clark, S.P., Arden, B. & Mak, T.W. Human T-cell receptor variable gene segment families. Immunogenetlcs (In the press).
  12. Hunkapiller, T., Goverman, J., Koop, B.F. & Hood, L. Implications of the diversity of the immunoglobulin gene superfamily. Cold Spring Harbor Symp. Quant. Biol. 55, 15–29 (1989).
    Article Google Scholar
  13. Hunkapiller, T. & Hood, L. Molecular Evolution and the Immunoglobulin Gene Superfamily. In Evolution of Life: Fossils, Molecules and Culture (eds Osawa, S. & Honjo, T.) 123–143 (Springer-Verlag, New York, 1991).
    Google Scholar
  14. Cheng, S.H. et al. Biology of murine gamma/delta T cells. Crit. Rev.lmmunol. 11, 145–166 (1991).
    CAS Google Scholar
  15. Lafaille, J.J., DeCloux, A., Bonneville, M., Takagaki, Y. & Tonegawa, S. Junctional sequences of T cell receptor γδ genes: implications for γδ T cell lineages and for a novel intermediate of V-(D)-J joining. Cell 59, 859–870 (1989).
    Article CAS Google Scholar
  16. Meier, J.T. & Lewis, S.M. P nucleotides and V(D)J recombination: a fine-structure analysis. Molec. cell Biol. (in the press).
  17. Alt, F.W. et al. V(D)J recombination. Immunol. Today 13, 306–314 (1992).
    Article CAS Google Scholar
  18. Lewis, S. & Gellert, M. The mechanism of antigen receptor gene assembly. Cell 59, 585–588 (1989).
    Article CAS Google Scholar
  19. Reis, M.D., Griesser, H. & Mak, T.M. Antigen receptor genes in hemopoietic malignancies. Biochim. Biophys. Acta. 1072, 177–192 (1991).
    CAS PubMed Google Scholar
  20. Davis, M.M. & Bjorkman, P.J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–401 (1988).
    Article CAS Google Scholar
  21. Thompson, S.D., Larche, M., Manzo, A.R. & Hurwitz, J.L. Diversity of T-cell receptor alpha gene transcripts in the newborn and adult periphery. Immunogenetics 36, 95–103 (1992).
    Article CAS Google Scholar
  22. Hood, L., Koop, B.F., Goverman, J. & Hunkapiller, T. Model genomes: the benefits of analysing homologous human and mouse sequences. Trends Biotech. 10, 19–22 (1992).
    Article CAS Google Scholar
  23. Siu, G., Strauss, E.C., Lai, E. & Hood, L. Analysis of a human Vβ gene subfamily. J. exp. Med. 164, 1600–1614 (1986).
    Article CAS Google Scholar
  24. Hardison, R. & Miller, W. Use of long sequence alignments to study the evolution and regulation of mammalian globin gene clusters. Molec. Biol. Evol. 10, 73–102 (1993).
    CAS PubMed Google Scholar
  25. Margot, J.B., Demers, G.W. & Hardison, R.C. Complete nucleotide sequence of the rabbit β-like globin gene cluster. J. molec. Biol. 205, 15–40 (1989).
    Article CAS Google Scholar
  26. Fickett, J.W. Recognition of protein-coding regions in DNA sequences. Nucl. Acids Res. 10, 5303–5318 (1982).
    Article CAS Google Scholar
  27. Uberbacker, E.C. & Mural, R.J. Locating protein coding region in human DNA sequences using a neural network—multiple senson approach. Proc. natn. Acad. Sci U.S.A 88, 11262–11264 (1991).
    Google Scholar
  28. Lai, E., Concannon, P. & Hood, L. Orgnaization and evolution of the human T-cell receptor β gene family. Proc. natn. Acad. Sci. U.S.A. 84, 3846–3849 (1986).
    Article Google Scholar
  29. Hara, J. et al. Differential usage of d recombining element and Vδ genes during T-cell ontogeny. Blood 78, 2075–2081 (1991).
    CAS PubMed Google Scholar
  30. deVillartay, J.-P., Mossalayi, D., de Chasseval, R., Dalloul, A. & Debre, P. The differentiation of human pro-thymocytes along the TCR-α/δ pathway in vitro is accompanied by the site-specific deletion of the TCR-δ locus. Int. Immunol. 3, 1301–1305 (1991).
    Article CAS Google Scholar
  31. Hesse, J.E., Lieber, M.R., Mizuuchi, K. & Gellert, M. V(D)J recombination- a functional definition of the joining signals. Genes. Devel. 3, 1953–1961 (1989).
    Article Google Scholar
  32. Oltz, E.M. et al. A V(D)J recombinase-inducible B-cell line: Role of transcriptional enhancer elements in directing V(D)J recombination. Molec. Cell Biol. 13, 6223–6230 (1993).
    Article CAS Google Scholar
  33. lida, Y. Quantification analysis of 5′-splice signal sequences in mRNA precursors. Mutations in 5′-splice signal sequence of human β-globin gene and β thalassemia. J. Theor. Biol. 145, 523–533 (1990).
    Article Google Scholar
  34. Kimura, N., Toyonaga, B., Yoshikai, Y., Du, R. & Mak, T. Sequences and repertoire of the human T-cell receptor a and β chain variable region genes in thymocytes. Eur. J. Immunol. 17, 375–383 (1987).
    Article CAS Google Scholar
  35. Redondo, J.M., Hata, S., Brocklehurst, C. & Krangel, M.S. A T cell-specific transcriptional enhancer within the human T cell receptor δ locus. Nature 247, 1225–1229 (1990).
    CAS Google Scholar
  36. Luria, S., Gross, G., Horowitz, M. & Givol, D. Promoter and enhancer elements in the rearranged α chain gene of the human T cell receptor. EMBO J. 6, 3307–3312 (1987).
    Article CAS Google Scholar
  37. Gill, L.L., Zaninetta, D. & Karjalainen, K. Transcriptional enhancer of the mouse T-cell receptor d gene locus. Eur. J. Immunol. 21, 807–810 (1991).
    Article CAS Google Scholar
  38. Winoto, A. & Baltimore, D. α-β lineage specific expression of the α T cell receptor gene by nearby silencers. Cell 59, 649–655 (1989).
    Article CAS Google Scholar
  39. Leiden, J.M. Transcriptional regulation during T-cell development: the alpha TCR gene as a molecular model. Immunol. Today 13, 22–30 (1991).
    Article Google Scholar
  40. Deininger, P.L., SINEs: Short, interspersed repeated DNA elements in higher eukaryotes. In Mobile DNA (eds Berg, D.E. & Howe, M.M.) (American Society for Microbiology, Washington, D.C. 1989).
    Google Scholar
  41. Sinnett, D., Richer, C., Deragon, J.-M. & Labuda, D. Alu RNA transcripts in human embryonal carcinoma cells. Model of post-transcriptional selection of master sequences. J. molec. Biol. 226, 689–706 (1992).
    Article CAS Google Scholar
  42. Loeb, D.D. et al. The sequence of a large L1md element reveals a tandemly repeated 5′ end and several features found in retrotransposons. Molec. cell. Biol. 6, 168–182 (1986).
    Article CAS Google Scholar
  43. Legouis, R. et al. The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67, 423–435 (1991).
    Article CAS Google Scholar
  44. Edwards, A. et al. Automated DNA sequencing of the human HPRT locus. Genomics 6, 593–608 (1990).
    Article CAS Google Scholar
  45. Iris, R.J.M. et al. Dense Alu clustering and a potential new member of the NF kB family within a 90 kilobase HLA class III segment. Nature Genet. 3, 137–145 (1993).
    Article CAS Google Scholar
  46. McCombie, W.R. et al. Expressed genes, Alu repeats and polymorphisms in cosmids sequenced from chromosome 4p16.3. Nature Genet. 1, 348–353 (1992).
    Article CAS Google Scholar
  47. Koop, B.F. et al. Sequence length and error analysis of Sequenase and Taq (cycle) sequencing methods. BioTechniques 14, 442–447 (1993).
    CAS Google Scholar
  48. Seto, D., Koop, B.F., Seto, J. & Hood, L. An experimentally-derived data set constructed for testing large-scale sequence assembly algorithms. Genomics (in the press).
  49. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D. A basic local alignment search tool. J. molec. Biol. 215, 403–410 (1990).
    Article CAS Google Scholar
  50. Smith, T.F. & Waterman, M.S. Identification of common molecular sequences. J. molec. Biol. 147, 195–197 (1981).
    Article CAS Google Scholar
  51. Huang, X. & Miller, W. A time efficient, linear space local similarity algorithm. Adv. Appl. Math. 12, 337–357 (1991).
    Article Google Scholar
  52. Higgins, D.G. & Sharp, P.M. Fast and sensitive multiple sequence alignments on a microcomputer. Cabios 5, 151–153 (1989).
    CAS PubMed Google Scholar

Download references