A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA (original) (raw)
References
Clarke, L. & Carbon, J. The structure and function of yeast centromeres. Annu. Rev. Genet.19, 29–56 (1985). ArticleCAS Google Scholar
Steiner, N., Hahnenberger, K. & Clarke, L. Centromeres of the fission yeast Schizosaccharomyces pombe are highly variable genetic loci. Mol. Cell. Biol.13, 4578–4587 (1993). ArticleCAS Google Scholar
Murphy, T.D. & Karpen, G.H. Localization of centromere function in a Drosophila minichromosome. Cell82, 599–609 (1995). ArticleCAS Google Scholar
Wevrick, R. & Willard, H.F. Long-range organization of tandem arrays of alpha-satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc. Natl. Acad. Sci. USA86, 9394–9398 (1989). ArticleCAS Google Scholar
Wevrick, R. & Willard, H.F. Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays. Nucleic Acids Res.19, 2295–2301 (1991). ArticleCAS Google Scholar
Trowell, H.E., Nagy, A., Vissel, B. & Choo, K.H.A. Long-range analyses of the centromeric regions of human chromosomes 13, 14 and 21: identification of a narrow domain containing two key centromeric DNA elements. Hum. Mol. Genet.2, 1639–1649 (1993). ArticleCAS Google Scholar
Grady, D. et al. Highly conserved repetitive DNA sequences are present at human centromeres. Proc. Natl. Acad. Sci. USA89, 1695–1699 (1992). ArticleCAS Google Scholar
Haaf, T., Warburton, P.E. & Willard, H.F. Integration of human α-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Cell70, 681–696 (1992). ArticleCAS Google Scholar
Larin, Z., Fricker, M.D. & Tyler-Smith, C. De novo formation of several features of a centromere following introduction of a Y alphoid YAC into mammalian cells. Hum. Mol. Genet.3, 689–695. (1994). ArticleCAS Google Scholar
Tyler-Smith, C. et al. Localization of DNA sequences required for human centromere function through an analysis of rearranged Y chromosomes. Nature Genet.5, 368–375 (1993). ArticleCAS Google Scholar
Brown, K.E. et al. Dissecting the centromere of the human Y chromosome with cloned telomeric DNA. Hum. Mol. Genet.3, 1227–1237 (1994). ArticleCAS Google Scholar
Farr, C. et al. Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J.14, 5444–5454 (1995). ArticleCAS Google Scholar
Heller, R., Brown, K., Burgtorf, C. & Brown, W. Mini-chromosomes derived from the Y chromosome by telomere directed chromosome breakage. Proc. Natl. Acad. Sci. USA93, 7125–7130 (1996). ArticleCAS Google Scholar
Sullivan, K.F., Hechenberger, M. & Masri, K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol.127, 581–592 (1994). ArticleCAS Google Scholar
Pluta, A.F., Cooke, C.A. & Earnshaw, W.C. Structure of the human centromere at metaphase. Trends Biochem.15, 181–185 (1990). ArticleCAS Google Scholar
Earnshaw, W.C., Ratrie, H. & Stetten, G. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma98, 1–12 (1989). ArticleCAS Google Scholar
Bernat, R.L., Borisy, G.G., Rothfield, N.F. & Earnshaw, W.C. Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement in mitosis. J. Cell. Biol.111, 1519–1533 (1990). ArticleCAS Google Scholar
Tomkiel, J., Cooke, C.A., Saitoh, H., Bernat, R.L. & Earnshaw, W.C. CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J. Cell. Biol.125, 531–545 (1994). ArticleCAS Google Scholar
Page, S.L., Earnshaw, W.C., Choo, K.H.A. & Shaffer, L.G. Further evidence that CENP-C is a necessary component of active centromeres: studies of a dic(X;15) with simultaneous immunofluorescence and FISH. Hum. Mol. Genet.4, 289–294 (1995). ArticleCAS Google Scholar
Sullivan, B.A. & Schwartz, S. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum. Mol. Genet.4, 2189–2197 (1995). ArticleCAS Google Scholar
Kingwell, B. & Rattner, J. Mammalian kinetochore/centromere composition: A 50 kDa antigen is present in the mammalian kinetochore/centromere. Chromosoma95, 403–407 (1987). ArticleCAS Google Scholar
Bischoff, F., Maier, G., Tilz, G. & Ponstingl, H. A 47-kDa human nuclear protein recognized by antikinetochore autoimmune sera is homologous with the protein encoded by RCC1, a gene implicated in onset of chromosome condensation. Proc. Natl. Acad. Sci USA87, 8617–8621 (1990). ArticleCAS Google Scholar
Dasso, M. RCC1 in the cell cycle: the regulator of chromosome condensation takes on new roles. Trends Biochem. Sci.18, 96–101 (1993). ArticleCAS Google Scholar
Earnshaw, W. & MacKay, A. Role of nonhistone proteins in the chromosomal events of mitosis. FASEB J.8, 947–956 (1994). ArticleCAS Google Scholar
Pluta, A.F., Mackay, A.M., Ainsztein, A.M., Goldberg, I.G. & Earnshaw, W.C. The centromere: hub of chromosomal activities. Science270, 1591–1594 (1995). ArticleCAS Google Scholar
Choo, K.H.A., The Centromere (Oxford University Press, Oxford, New York, Toyko, in the press).
Yang, C., Tomkiel, J., Saitoh, H., Johnson, D. & Earnshaw, W. Identification of overlapping DNA-binding and centromere-targeting domains in the human kinetochore protein CENP-C. Mol. Cell. Biol.16, 3576–3586 (1996). ArticleCAS Google Scholar
Voullaire, L.E., Slater, H.R., Petrovic, V. & Choo, K.H.A. A functional marker centromere with no detectable alpha-satellite, satellite Hi, or CENP-B protein: activation of a latent centromere. Am. J. Hum. Genet.52, 1153–1163 (1993). CASPubMedPubMed Central Google Scholar
Moir, D.T. et al. Toward a physical map of human chromosome 10: isolation of 183 YACs representing 80 loci and regional assignment of 94 YACs by fluorescence in situ hybridization. Genomics22, 1–12 (1994). ArticleCAS Google Scholar
Zheng, C. et al. Development of 124 sequence-tagged sites and cytogenetic localization of 217 cosmidsfor human chromosome 10. Genomics22, 55–67 (1994). ArticleCAS Google Scholar
Moschonas, N.K., Spurr, N.K. & Mao, J. Report of the first international workshop on human chromosome 10 mapping 1995. Cytogenet. Cell Genet.72, 99–112 (1996). ArticleCAS Google Scholar
Haaf, T. & Ward, D.C. Structural analysis of α-satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum. Mol. Genet.3, 697–709 (1994). ArticleCAS Google Scholar
Nelson, M. & McClelland, M. Site-specific methylation: effect on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res.19, 2045–2071 (1991). ArticleCAS Google Scholar
Wilson, R.R. et al. 2.2. Mb of contiguous nudeotide sequence from chromosome III of C.elegans. Nature368, 32–38 (1994). ArticleCAS Google Scholar
Stoler, S., Keith, K.C., Curnick, K.E. & Fitzgerald-Hayes, M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Develop.9, 573–586 (1995). ArticleCAS Google Scholar
Palmer, D.K. & Margolis, R.L. Kinetochore components recognized by human autoantibodies are present on mononucleosomes. Mol. Cell. Biol.5, 173–186 (1985). ArticleCAS Google Scholar
Palmer, D.K., O'Day, K., Wener, M.H., Andrews, B.S. & Margolis, R.L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histonesJ. Cell. Biol.104, 805–815 (1987). ArticleCAS Google Scholar
Brown, M.T., Goetsch, L. & Hartwell, L.H. MIF2 is required for mitotic spindle integrity during anaphase spindle elongation in xSaccharomyces cerevisiae. J. Cell. Biol.123, 387–403 (1993). ArticleCAS Google Scholar
Brown, M. Sequence similarities between the yeast chromosome segregation protein Mif2 and the mammalian centromere protein CENP-C. Gene160, 111–116 (1995). ArticleCAS Google Scholar
Meluh, P. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell6, 793–807 (1995). ArticleCAS Google Scholar
Heartlein, M.W., Knoll, J.H.M. & Latt, S.A. Chromosome instability associated with human alphoid DNAtransfected into the Chinese hamster genome. Mol. Cell. Biol.8, 3611–3618 (1988). ArticleCAS Google Scholar
Harrington, J.J., Van Bokkelen, G., Mays, R.W., Gustashaw, K. & Willard, H.F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nature Genet.15, 345–355 (1997). ArticleCAS Google Scholar
Verma, R.A. & Luke, S. Variations in alphoid DNA sequences escape detection of aneuploidy at interphase by FISH technique. Genomics14, 113–116 (1992). ArticleCAS Google Scholar
Brown, W. & Tyler-Smith, C. Centromere activation. Trends Genet.11, 337–339 (1995). ArticleCAS Google Scholar
Steiner, N. & Clarke, L. A novel epigenetic effect can alter centromere function in fission yeast. Cell79, 865–874 (1994). ArticleCAS Google Scholar
Dutrillaux, B. Chromosomal evolution in primates: tentative phylogeny from microcebus murinus (Prosimian) to man. Hum. Genet.48, 251–314 (1979). ArticleCAS Google Scholar
Searle, A.G. et al. Chromosome maps of man and mouse. IV. Anal. Hum. Genet.53, 89–140 (1989). ArticleCAS Google Scholar
Aleixandre, C. et al. p82H identifies sequences at every human centromere. Hum. Genet.77, 46–50 (1987). ArticleCAS Google Scholar
Baldini, A., Ried, T., Shridhar, V. & Ward, D.C. Alpha satellite DNA sequences at the non-centromeric locations 2q21 and 9q13. Cytogenet. Cell Genet.58, 1868–1874 (1991). Article Google Scholar
Baldini, A. et al. An alphoid DNA sequence conserved in all human and great ape chromosomes: evidence for ancient centromeric sequences at human chromosomal regions 2q21 and 9q13. Hum. Genet.90, 577–583 (1993). ArticleCAS Google Scholar
Callen, D.F., Eyre, H., Yip, M., Freemantle, J. & Haan, E.A. Molecular cytogenetic and clinical studies of 42 patients with marker chromosomes. Am. J. Med. Genet.43, 709–715 (1992). ArticleCAS Google Scholar
Crolla, J.A., Dennis, N.R. & Jacobs, P.A. A non-isotopic in situ hybridization study of the chromosomal origin of 15 supernumerary marker chromosomes in man. J. Med. Genet.29, 699–703 (1992). ArticleCAS Google Scholar
Rauch, A. et al. A study of ten small supernumerary (marker) chromosomes identified by fluorescence in situ hybridization (FISH). Cell Genet.42, 84–90 (1992). CAS Google Scholar
Magnani, I. et al. Identification of the chromosome 14 origin of a C-negative marker associated with a 14q32 deletion by chromosome painting. Cell Genet.43, 180–185 (1993). CAS Google Scholar
Blennow, E. et al. Tetrasomy 15q: two marker chromosomes with no detectable alpha-satellite DNA. Am. J. Hum. Genet.54, 877–883 (1994). CASPubMedPubMed Central Google Scholar
Ohashi, H. et al. A stable acentric marker chromosome: possible existence of an intercalary ancient centromere at distal 8p. Am. J. Hum. Genet.55, 1202–1208 (1994). CASPubMedPubMed Central Google Scholar
Brownstein, B. et al. Isolation of single-copy human genes from a library of yeast artificial chromosome clones. Science244, 1348–1351 (1989). ArticleCAS Google Scholar
Albertsen, H., Abderrahim, H., Cann, H.J.D., Paslier, D.L. & Cohen, D. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc. Natl. Acad. Sci. USA.87, 4256–4260 (1990). ArticleCAS Google Scholar
Archidiacono, N., Antonacci, R., Forabosco, A. & Rocchi, M. Preparation of human chromosomal painting probes from somatic cell hybrids. In In Situ Hybridization Protocols, (ed. K.H.A. Choo) 1–14 (Humana Press, Totowa, New Jersey, 1994). Google Scholar
Moroi, Y Hartman, A.L., Nakane, P.K & Tan, E.M. Distribution of kinetochore (centromere) antigen in mammalian cell nuclei. Cell Biol.90, 254–259 (1981). ArticleCAS Google Scholar
Fritzler, M.J. & Kinsella, T.D. The CREST syndrome: a distinct serologic entity with anticentromere antibodies. Am. J. Med.69, 520–526 (1980). ArticleCAS Google Scholar
Brenner, S., Pepper, D., Berns, M.W., Tan, E. & Brinkley, B.R. Kinetochore structure, duplication and distribution in mammalian cells: analysis by human autoantibodies fromscleroderma patients. Cell. Biol.91, 95–102 (1981). ArticleCAS Google Scholar
Jeppensen, P., Mitchell, A., Turner, B. & Perry, P. Antibodies to defined histone epitopes reveal variations in chromatin conformation and underacetylation of centric heterochromatin in human metaphase chromosomes. Chromosoma101, 322–332 (1992). Article Google Scholar
Earnshaw, W.C. & Migeon, B.R. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma92, 290–296(1985). ArticleCAS Google Scholar
Jeppensen, P. & Turner, B.M. The inactive X chromosome in female mammals is dinstinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell74, 281–289 (1993). Article Google Scholar