A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA (original) (raw)

References

  1. Clarke, L. & Carbon, J. The structure and function of yeast centromeres. Annu. Rev. Genet. 19, 29–56 (1985).
    Article CAS Google Scholar
  2. Steiner, N., Hahnenberger, K. & Clarke, L. Centromeres of the fission yeast Schizosaccharomyces pombe are highly variable genetic loci. Mol. Cell. Biol. 13, 4578–4587 (1993).
    Article CAS Google Scholar
  3. Murphy, T.D. & Karpen, G.H. Localization of centromere function in a Drosophila minichromosome. Cell 82, 599–609 (1995).
    Article CAS Google Scholar
  4. Wevrick, R. & Willard, H.F. Long-range organization of tandem arrays of alpha-satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc. Natl. Acad. Sci. USA 86, 9394–9398 (1989).
    Article CAS Google Scholar
  5. Wevrick, R. & Willard, H.F. Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays. Nucleic Acids Res. 19, 2295–2301 (1991).
    Article CAS Google Scholar
  6. Trowell, H.E., Nagy, A., Vissel, B. & Choo, K.H.A. Long-range analyses of the centromeric regions of human chromosomes 13, 14 and 21: identification of a narrow domain containing two key centromeric DNA elements. Hum. Mol. Genet. 2, 1639–1649 (1993).
    Article CAS Google Scholar
  7. Grady, D. et al. Highly conserved repetitive DNA sequences are present at human centromeres. Proc. Natl. Acad. Sci. USA 89, 1695–1699 (1992).
    Article CAS Google Scholar
  8. Haaf, T., Warburton, P.E. & Willard, H.F. Integration of human α-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Cell 70, 681–696 (1992).
    Article CAS Google Scholar
  9. Larin, Z., Fricker, M.D. & Tyler-Smith, C. De novo formation of several features of a centromere following introduction of a Y alphoid YAC into mammalian cells. Hum. Mol. Genet. 3, 689–695. (1994).
    Article CAS Google Scholar
  10. Tyler-Smith, C. et al. Localization of DNA sequences required for human centromere function through an analysis of rearranged Y chromosomes. Nature Genet. 5, 368–375 (1993).
    Article CAS Google Scholar
  11. Brown, K.E. et al. Dissecting the centromere of the human Y chromosome with cloned telomeric DNA. Hum. Mol. Genet. 3, 1227–1237 (1994).
    Article CAS Google Scholar
  12. Farr, C. et al. Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J. 14, 5444–5454 (1995).
    Article CAS Google Scholar
  13. Heller, R., Brown, K., Burgtorf, C. & Brown, W. Mini-chromosomes derived from the Y chromosome by telomere directed chromosome breakage. Proc. Natl. Acad. Sci. USA 93, 7125–7130 (1996).
    Article CAS Google Scholar
  14. Sullivan, K.F., Hechenberger, M. & Masri, K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127, 581–592 (1994).
    Article CAS Google Scholar
  15. Pluta, A.F., Cooke, C.A. & Earnshaw, W.C. Structure of the human centromere at metaphase. Trends Biochem. 15, 181–185 (1990).
    Article CAS Google Scholar
  16. Earnshaw, W.C., Ratrie, H. & Stetten, G. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98, 1–12 (1989).
    Article CAS Google Scholar
  17. Bernat, R.L., Borisy, G.G., Rothfield, N.F. & Earnshaw, W.C. Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement in mitosis. J. Cell. Biol. 111, 1519–1533 (1990).
    Article CAS Google Scholar
  18. Tomkiel, J., Cooke, C.A., Saitoh, H., Bernat, R.L. & Earnshaw, W.C. CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J. Cell. Biol. 125, 531–545 (1994).
    Article CAS Google Scholar
  19. Page, S.L., Earnshaw, W.C., Choo, K.H.A. & Shaffer, L.G. Further evidence that CENP-C is a necessary component of active centromeres: studies of a dic(X;15) with simultaneous immunofluorescence and FISH. Hum. Mol. Genet. 4, 289–294 (1995).
    Article CAS Google Scholar
  20. Sullivan, B.A. & Schwartz, S. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum. Mol. Genet. 4, 2189–2197 (1995).
    Article CAS Google Scholar
  21. Kingwell, B. & Rattner, J. Mammalian kinetochore/centromere composition: A 50 kDa antigen is present in the mammalian kinetochore/centromere. Chromosoma 95, 403–407 (1987).
    Article CAS Google Scholar
  22. Bischoff, F., Maier, G., Tilz, G. & Ponstingl, H. A 47-kDa human nuclear protein recognized by antikinetochore autoimmune sera is homologous with the protein encoded by RCC1, a gene implicated in onset of chromosome condensation. Proc. Natl. Acad. Sci USA 87, 8617–8621 (1990).
    Article CAS Google Scholar
  23. Dasso, M. RCC1 in the cell cycle: the regulator of chromosome condensation takes on new roles. Trends Biochem. Sci. 18, 96–101 (1993).
    Article CAS Google Scholar
  24. Earnshaw, W. & MacKay, A. Role of nonhistone proteins in the chromosomal events of mitosis. FASEB J. 8, 947–956 (1994).
    Article CAS Google Scholar
  25. Pluta, A.F., Mackay, A.M., Ainsztein, A.M., Goldberg, I.G. & Earnshaw, W.C. The centromere: hub of chromosomal activities. Science 270, 1591–1594 (1995).
    Article CAS Google Scholar
  26. Choo, K.H.A., The Centromere (Oxford University Press, Oxford, New York, Toyko, in the press).
  27. Yang, C., Tomkiel, J., Saitoh, H., Johnson, D. & Earnshaw, W. Identification of overlapping DNA-binding and centromere-targeting domains in the human kinetochore protein CENP-C. Mol. Cell. Biol. 16, 3576–3586 (1996).
    Article CAS Google Scholar
  28. Voullaire, L.E., Slater, H.R., Petrovic, V. & Choo, K.H.A. A functional marker centromere with no detectable alpha-satellite, satellite Hi, or CENP-B protein: activation of a latent centromere. Am. J. Hum. Genet. 52, 1153–1163 (1993).
    CAS PubMed PubMed Central Google Scholar
  29. Moir, D.T. et al. Toward a physical map of human chromosome 10: isolation of 183 YACs representing 80 loci and regional assignment of 94 YACs by fluorescence in situ hybridization. Genomics 22, 1–12 (1994).
    Article CAS Google Scholar
  30. Zheng, C. et al. Development of 124 sequence-tagged sites and cytogenetic localization of 217 cosmidsfor human chromosome 10. Genomics 22, 55–67 (1994).
    Article CAS Google Scholar
  31. Moschonas, N.K., Spurr, N.K. & Mao, J. Report of the first international workshop on human chromosome 10 mapping 1995. Cytogenet. Cell Genet. 72, 99–112 (1996).
    Article CAS Google Scholar
  32. Haaf, T. & Ward, D.C. Structural analysis of α-satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum. Mol. Genet. 3, 697–709 (1994).
    Article CAS Google Scholar
  33. Nelson, M. & McClelland, M. Site-specific methylation: effect on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res. 19, 2045–2071 (1991).
    Article CAS Google Scholar
  34. Wilson, R.R. et al. 2.2. Mb of contiguous nudeotide sequence from chromosome III of C.elegans. Nature 368, 32–38 (1994).
    Article CAS Google Scholar
  35. Stoler, S., Keith, K.C., Curnick, K.E. & Fitzgerald-Hayes, M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Develop. 9, 573–586 (1995).
    Article CAS Google Scholar
  36. Palmer, D.K. & Margolis, R.L. Kinetochore components recognized by human autoantibodies are present on mononucleosomes. Mol. Cell. Biol. 5, 173–186 (1985).
    Article CAS Google Scholar
  37. Palmer, D.K., O'Day, K., Wener, M.H., Andrews, B.S. & Margolis, R.L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histonesJ. Cell. Biol. 104, 805–815 (1987).
    Article CAS Google Scholar
  38. Brown, M.T., Goetsch, L. & Hartwell, L.H. MIF2 is required for mitotic spindle integrity during anaphase spindle elongation in xSaccharomyces cerevisiae. J. Cell. Biol. 123, 387–403 (1993).
    Article CAS Google Scholar
  39. Brown, M. Sequence similarities between the yeast chromosome segregation protein Mif2 and the mammalian centromere protein CENP-C. Gene 160, 111–116 (1995).
    Article CAS Google Scholar
  40. Meluh, P. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6, 793–807 (1995).
    Article CAS Google Scholar
  41. Heartlein, M.W., Knoll, J.H.M. & Latt, S.A. Chromosome instability associated with human alphoid DNAtransfected into the Chinese hamster genome. Mol. Cell. Biol. 8, 3611–3618 (1988).
    Article CAS Google Scholar
  42. Harrington, J.J., Van Bokkelen, G., Mays, R.W., Gustashaw, K. & Willard, H.F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nature Genet. 15, 345–355 (1997).
    Article CAS Google Scholar
  43. Verma, R.A. & Luke, S. Variations in alphoid DNA sequences escape detection of aneuploidy at interphase by FISH technique. Genomics 14, 113–116 (1992).
    Article CAS Google Scholar
  44. Brown, W. & Tyler-Smith, C. Centromere activation. Trends Genet. 11, 337–339 (1995).
    Article CAS Google Scholar
  45. Steiner, N. & Clarke, L. A novel epigenetic effect can alter centromere function in fission yeast. Cell 79, 865–874 (1994).
    Article CAS Google Scholar
  46. Dutrillaux, B. Chromosomal evolution in primates: tentative phylogeny from microcebus murinus (Prosimian) to man. Hum. Genet. 48, 251–314 (1979).
    Article CAS Google Scholar
  47. Searle, A.G. et al. Chromosome maps of man and mouse. IV. Anal. Hum. Genet. 53, 89–140 (1989).
    Article CAS Google Scholar
  48. Aleixandre, C. et al. p82H identifies sequences at every human centromere. Hum. Genet. 77, 46–50 (1987).
    Article CAS Google Scholar
  49. Baldini, A., Ried, T., Shridhar, V. & Ward, D.C. Alpha satellite DNA sequences at the non-centromeric locations 2q21 and 9q13. Cytogenet. Cell Genet. 58, 1868–1874 (1991).
    Article Google Scholar
  50. Baldini, A. et al. An alphoid DNA sequence conserved in all human and great ape chromosomes: evidence for ancient centromeric sequences at human chromosomal regions 2q21 and 9q13. Hum. Genet. 90, 577–583 (1993).
    Article CAS Google Scholar
  51. Callen, D.F., Eyre, H., Yip, M., Freemantle, J. & Haan, E.A. Molecular cytogenetic and clinical studies of 42 patients with marker chromosomes. Am. J. Med. Genet. 43, 709–715 (1992).
    Article CAS Google Scholar
  52. Crolla, J.A., Dennis, N.R. & Jacobs, P.A. A non-isotopic in situ hybridization study of the chromosomal origin of 15 supernumerary marker chromosomes in man. J. Med. Genet. 29, 699–703 (1992).
    Article CAS Google Scholar
  53. Rauch, A. et al. A study of ten small supernumerary (marker) chromosomes identified by fluorescence in situ hybridization (FISH). Cell Genet. 42, 84–90 (1992).
    CAS Google Scholar
  54. Magnani, I. et al. Identification of the chromosome 14 origin of a C-negative marker associated with a 14q32 deletion by chromosome painting. Cell Genet. 43, 180–185 (1993).
    CAS Google Scholar
  55. Blennow, E. et al. Tetrasomy 15q: two marker chromosomes with no detectable alpha-satellite DNA. Am. J. Hum. Genet. 54, 877–883 (1994).
    CAS PubMed PubMed Central Google Scholar
  56. Ohashi, H. et al. A stable acentric marker chromosome: possible existence of an intercalary ancient centromere at distal 8p. Am. J. Hum. Genet. 55, 1202–1208 (1994).
    CAS PubMed PubMed Central Google Scholar
  57. Brownstein, B. et al. Isolation of single-copy human genes from a library of yeast artificial chromosome clones. Science 244, 1348–1351 (1989).
    Article CAS Google Scholar
  58. Albertsen, H., Abderrahim, H., Cann, H.J.D., Paslier, D.L. & Cohen, D. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc. Natl. Acad. Sci. USA. 87, 4256–4260 (1990).
    Article CAS Google Scholar
  59. Archidiacono, N., Antonacci, R., Forabosco, A. & Rocchi, M. Preparation of human chromosomal painting probes from somatic cell hybrids. In In Situ Hybridization Protocols, (ed. K.H.A. Choo) 1–14 (Humana Press, Totowa, New Jersey, 1994).
    Google Scholar
  60. Moroi, Y Hartman, A.L., Nakane, P.K & Tan, E.M. Distribution of kinetochore (centromere) antigen in mammalian cell nuclei. Cell Biol. 90, 254–259 (1981).
    Article CAS Google Scholar
  61. Fritzler, M.J. & Kinsella, T.D. The CREST syndrome: a distinct serologic entity with anticentromere antibodies. Am. J. Med. 69, 520–526 (1980).
    Article CAS Google Scholar
  62. Brenner, S., Pepper, D., Berns, M.W., Tan, E. & Brinkley, B.R. Kinetochore structure, duplication and distribution in mammalian cells: analysis by human autoantibodies fromscleroderma patients. Cell. Biol. 91, 95–102 (1981).
    Article CAS Google Scholar
  63. Jeppensen, P., Mitchell, A., Turner, B. & Perry, P. Antibodies to defined histone epitopes reveal variations in chromatin conformation and underacetylation of centric heterochromatin in human metaphase chromosomes. Chromosoma 101, 322–332 (1992).
    Article Google Scholar
  64. Earnshaw, W.C. & Migeon, B.R. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92, 290–296(1985).
    Article CAS Google Scholar
  65. Jeppensen, P. & Turner, B.M. The inactive X chromosome in female mammals is dinstinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74, 281–289 (1993).
    Article Google Scholar

Download references