Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1 (original) (raw)
Schut, J.W. Hereditary ataxia: clinical study through six generations. Arch. Neurol. Psychiat.63, 535–567 (1954). Article Google Scholar
Currier, R.D., Glover, G., Jackson, J.F. & Tipton, A.C. Spinocerebellar ataxia: study of a large kindred. Neurology22, 1040–1043 (1972). ArticleCAS Google Scholar
Nino, H.E., Noreen, H.J. & Dubey, D.P. A family with hereditary ataxia: HLA typing. Neurology30, 12–20 (1980). ArticleCAS Google Scholar
Zoghbi, H.Y. et al. Spinocerebellar ataxia: variable age of onset and linkage to human leukocyte antigen in a large kindred. Ann. Neurol.23, 580–584 (1988). ArticleCAS Google Scholar
Greenfield, J.G. The spino-cerebellar degenerations (Charles C. Thomas, Springfield, Illinois, 1954). Google Scholar
Haines, J.L., Schut, L.J. & Weitkamp, L.R. Spinocerebellar ataxia in large kindred: age at onset, reproduction, and genetic linkage studies. Neurology34, 1542–1548 (1984). ArticleCAS Google Scholar
Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell68, 799–808 (1992). ArticleCAS Google Scholar
Bruner, H.G. et al. Reverse mutation in myotonic dystrophy. New Engl. J. Med.328, 476–480 (1993). Article Google Scholar
Buxton, J. et al. Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature355, 547–548 (1992). ArticleCAS Google Scholar
Fu, Y.-H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell67, 1047–1058 (1991). ArticleCAS Google Scholar
Fu, Y.-H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science255, 1256–1259 (1992). ArticleCAS Google Scholar
Harley, H.G. et al. Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature355, 545–546 (1992). ArticleCAS Google Scholar
Harley, H.G. et al. Unstable DNA sequence in myotonic dystrophy. Lancet339, 1125–1128 (1992). ArticleCAS Google Scholar
Kremer, E.J. et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science252, 1711–1714 (1991). ArticleCAS Google Scholar
Verkerk, A.J.M.H. et al. Identification of a gene (FMR–1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell65, 905–914 (1991). ArticleCAS Google Scholar
Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science255, 1253–1255 (1992). ArticleCAS Google Scholar
The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's Disease Chromosomes. Cell72, 971–983 (1993). Article Google Scholar
La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fishbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature352, 77–79 (1991). ArticleCAS Google Scholar
Yakura, H., Wakisaka, A., Fujimoto, S. & Itakura, K. Hereditary ataxia and HLA genotypes. New Engl. J. Med.291, 154–155 (1974). CASPubMed Google Scholar
Jackson, J.F., Currier, R.D., Terasaki, P.I. & Morton, N.E. Spinocerebellar ataxia and HLA linkage: risk prediction by HLA typing. New Engl. J. Med.296, 1138–1141 (1977). ArticleCAS Google Scholar
Ranum, L.P.W. et al. Localization of the autosomal dominant, HLA-linked spinocerebellar ataxia (SCA1) locus in two kindreds within an 8cM subregion of chromosome 6p. Am. J. hum. Genet.49, 31–41 (1991). CASPubMedPubMed Central Google Scholar
Kwiatkowski, T.J. Jr. et al. The gene for autosomal dominant spinocerebellar ataxia (SCA1) maps centromeric to D6S89 and shows no recombination, in nine large kindreds, with a dinudeotide repeat at the AM10 locus. Am. J. hum. Genet. (in the press).
La Spada, A.R. et al. Meiotic stability and genotype-phenotype correlation of the trinucleotide repeat in X-linked spinal and bulbar muscular atrophy. Nature Genet.2, 301–304 (1992). ArticleCAS Google Scholar
Coutinho, P. & Andrade, C. Autosomal dominant system degeneration in Portuguese families of the Azores. Neurology28, 703–709 (1978). ArticleCAS Google Scholar
Takiyama, Y. et al. The gene for Machado-Joseph disease maps to human chromosome 14q. Nature Genet.4, 300–304 (1993). ArticleCAS Google Scholar
Harding, A.E. Genetic aspects of autosomal dominant late onset cerebellar ataxia. J. med. Genet.18, 436–441 (1981). ArticleCAS Google Scholar
Orozco, G. et al. Dominantly inherited olivopontocerebellar atrophy from eastern Cuba: clinical, neuropathological, and biochemical findings. J. neurol. Sci.93, 27–50 (1989). Article Google Scholar
Gispert, S. et al. Chromosomal assignment of the second (Cuban) locus for autosomal dominant cerebellar atrophy (SCA2) to human chromosome 12q23–24.1. Nature Genet.4, 295–299 (1993). ArticleCAS Google Scholar
Richards, R.I. et al. Evidence of founder chromosomes in fragile X syndrome. Nature Genet.1, 257–260 (1992). ArticleCAS Google Scholar
Harley, H.G. et al. Detection of linkage disequilibrium between the myotonic dystrophy locus and a new polymorphic DNA marker. Am. J. hum. Genet49, 68–75 (1991). CASPubMedPubMed Central Google Scholar
Quigley, C.A. et al. Complete deletion of the androgen receptor gene: definion of the null phenotype of the androgen insensitivity syndrome and determination of carrier status. J. clin. endocrinol. Metab.74, 927–933 (1992). ArticleCAS Google Scholar
Trifiro, M. et al. The 56/58 kDa androgen-binding protein in male genital skin fibroblasts with a deleted androgen receptor gene. Molec. cell. endocrinol.75, 37–47 (1991). ArticleCAS Google Scholar
Wharton, K.A., Johansen, K.M., Xu, T. & Artavanis-Tsakonas, S. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell43, 567–581 (1985). ArticleCAS Google Scholar
Vaessin, H. et al. prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell67, 941–953 (1991). ArticleCAS Google Scholar
Bellen, H.J., Kooyer, S., D'Evelyn, D. & Pearlman, J. The Drosophila Couch potato protein is expressed in nuclei of peripheral neuronal precursors and shows homology to RNA-binding proteins. Genes Dev.6, 2125–2136 (1992). ArticleCAS Google Scholar
Courey, A.J., Holtzman, D.A., Jackson, S.P. & Tjian, R. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell59, 827–836 (1989). ArticleCAS Google Scholar
Benson, M. & Pirrotta, V. The Drosophila zeste protein binds cooperatively to sites in many gene regulatory regions: implications for transvection and gene regulation. EMBO J.7, 3907–3915 (1988). ArticleCAS Google Scholar
Rich, S.S., Wilkie, P., Schut, L., Vance, G. & Orr, H.T. Spinocerebellar ataxia: localization of an autosomal dominant locus between two markers on human chromosome 6. Am. J. hum. Genet.41, 524–531 (1987). CASPubMedPubMed Central Google Scholar
Zoghbi, H.Y., Daiger, S.P., McCall, A., O'Brien, W.E. & Beaudet, A.L. Extensive DNA polymorphism at the factor Xllla (F13a) locus and linkage to HLA. Am. J. hum. Genet.42, 877–883 (1988). CASPubMedPubMed Central Google Scholar
Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, New York, 1989). Google Scholar
Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature359, 794–801 (1992). ArticleCAS Google Scholar
Albertsen, H.M. et al. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc. natn. Acad. Sci. U.S.A.87, 4256–4260 (1990). ArticleCAS Google Scholar
Brownstein, B.H. et al. Isolation of single-copy human genes from a library of yeast artificial chromosome clones. Science244, 1348–1351 (1989). ArticleCAS Google Scholar