Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis (original) (raw)
References
Swanson, A.G. Congenital insensitivity to pain with anhidrosis. Arch. Neurol.8, 299–306 (1963). ArticleCAS Google Scholar
Dyck, R.J. Neuronal atrophy and degeneration predominantly affecting peripheral sensory and autonomic neurons. In Peripheral Neuropathy (2nd Edn) (eds Dyck, RJ., Thomas, P.K., Lambert, E.H. & Bunge, R.) 1557–1599 (W. B. Saunders Company, Philadelphia, 1984). Google Scholar
McKusick, V.A. in Mendelian inheritance in man 11th edn. 2073. (The Johns Hopkins University Press, Baltimore, 1994). Google Scholar
Levi-Montalcini, R. The nerve growth factor: thirty-five years later. EMBO J.6, 1145–1154 (1987). ArticleCAS Google Scholar
Kaplan, D.R., Hempstead, B.L., Martin-Zanca, D., Chao, M.V. & Parada, L.F. The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science252, 554–558 (1991). ArticleCAS Google Scholar
Klein, R., Jing, S., Nanduri, V., O'Rourke, E. & Barbacid, M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell65, 189–197 (1991). ArticleCAS Google Scholar
Smeyne, R.J. et al. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature368, 246–249 (1994). ArticleCAS Google Scholar
Swanson, A.G., Buchan, G.C. & Alvord, E.G. Anatomic changes in congenital insensitivity to pain. Arch. Neurol.12, 12–18 (1965). ArticleCAS Google Scholar
Brown, J.W. & Podosin, R. A syndrome of the neural crest. Arch. Neurol.15, 294–301 (1966). ArticleCAS Google Scholar
Rafel, E., Alberca, R., Bautista, J., Navarrete, M. & Lazo, J. Congenital insensitivity to pain with anhidrosis. Muscle Nerve3, 216–220 (1980). ArticleCAS Google Scholar
Langer, J., Goebel, H.H. & Veit, S. Eccrine sweat glands are not innervated in hereditary sensory neuropathy type IV An electron-microscopic study. Acta Neuropathol. Berl.54, 199–202 (1981). ArticleCAS Google Scholar
Krawczak, M., Reiss, J. & Cooper, D.N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum. Genet.90, 41–54 (1992). ArticleCAS Google Scholar
Crowley, C. et al. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell76, 1001–1011 (1994). ArticleCAS Google Scholar
Lee, K.-F. et al. Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell69, 737–749 (1992). ArticleCAS Google Scholar
Vega, J.A. et al. Immunohistochemical localization of the high-affinity NGF receptor (gp140-trkA) in the adult human dorsal root and sympathetic ganglia and in the nerves and sensory corpuscles supplying digital skin. Anat. Rec.240, 579–588 (1994). ArticleCAS Google Scholar
Muragaki, Y. et al. Expression of trk receptors in the developing and adult human central and peripheral nervous system. J. Comp. Neurol.356, 387–397 (1995). ArticleCAS Google Scholar
Mountcastle, V.B. in Medical physiology 13th edn. 1319–1323 (The C. V. Mosby Company, St. Louis, 1974). Google Scholar
Gabella, G. in Structure of the autonomic nervous system. 153–154 (Chapman and Hall, London, 1976). Book Google Scholar
Wake, M.H. in Hyman's comparative vertebrate anatomy 3rd edn. 139–142 (The University of Chicago Press, Chicago, 1979). Google Scholar
Rosemberg, S., Marie, S.K.N. & Kliemann, S. Congenital insensitivity to pain with anhidrosis (hereditary sensory and autonomic neuropathy type IV). Pediatr. Neurol.11, 50–56 (1994). ArticleCAS Google Scholar
Martin-Zanca, D., Hughes, S.H. & Barbacid, M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature319, 743–748 (1986). ArticleCAS Google Scholar
Scribanu, N. & Grover-Johnson, N. Atypical nerve histology in a case of familial dysautonomia type II. Pediatr. Res.12, 556 (1978). Article Google Scholar
Indo, Y., Kitano, A., Endo, F., Akaboshi, I. & Matsuda, I. Altered kinetic properties of the branched-chain α-keto acid dehydrogenase complex due to mutation of the β-subunit of the branched-chain α-keto acid decarboxylase (E1) component in lymphoblastoid cells derived from patients with maple syrup urine disease. J. Clin. Invest.80, 63–70 (1987). ArticleCAS Google Scholar
Martin-Zanca, D., Oskam, R., Mitra, G., Copeland, T. & Barbacid, M. Molecular and biochemical characterization of the human trk proto-oncogene. Molec. Cell. Biol.9, 24–33 (1989). ArticleCAS Google Scholar
Greco, A., Mariani, C., Miranda, C., Pagliardini, S. & Pierotti, M.A. Characterization of the NTRK1 genomic region involved in chromosomal rearrangements generating TRK oncogenes. Genomics18, 397–400 (1993). ArticleCAS Google Scholar
Chomczynski, R. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem.162, 156–159 (1987). ArticleCAS Google Scholar
Sambrook, J., Fritsch, E.F. & Maniatis, T. in Molecular cloning: A laboratory manual 2nd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor), 1989). Google Scholar
Marchuk, D., Drumm, M., Saulino, A. & Collins, F.S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucl. Acids Res.19, 1154 (1991). ArticleCAS Google Scholar
Nakagawara, A. et al. Cloning and chromosomal localization of the human TRK-B tyrosine kinase receptor gene (NTRK2). Genomics25, 538–546 (1995). ArticleCAS Google Scholar