Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease (original) (raw)
MGD. Mouse Genomics Informatics Project (The Jackson Laboratory, Bar Harbor, Maine, 2001).
Yin, L., Krantz, B., Russell, N.S., Deshpande, S. & Wilkinson, K.D. Nonhydrolyzable diubiquitin analogues are inhibitors of ubiquitin conjugation and deconjugation. Biochemistry39, 10001–10010 (2000). ArticleCAS Google Scholar
McNaught, K.S., Olanow, C.W., Halliwell, B., Isacson, O. & Jenner, P. Failure of the ubiquitin–proteasome system in Parkinson's disease. Nat. Rev. Neurosci.2, 589–594 (2001). ArticleCAS Google Scholar
Skinner, P.J. et al. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature389, 971–974 (1997). ArticleCAS Google Scholar
Saigoh, K. et al. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet.23, 47–51 (1999). ArticleCAS Google Scholar
Katzmann, D.J., Babst, M. & Emr, S.D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell106, 145–155 (2001). ArticleCAS Google Scholar
Hicke, L. Protein regulation by monoubiquitination. Nat. Rev. Mol. Cell Biol.2, 195–201 (2001). ArticleCAS Google Scholar
Shih, S.C., Sloper-Mould, K.E. & Hicke, L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J.19, 187–198 (2000). ArticleCAS Google Scholar
D'Amato, C.J. & Hicks, S.P. Neuropathologic alterations in the ataxia (paralytic) mouse. Arch. Pathol.80, 604–612 (1965). CASPubMed Google Scholar
Royaux, I., Bernier, B., Montgomery, J.C., Flaherty, L. & Goffinet, A.M. Reln(rl-Alb2), an allele of reeler isolated from a chlorambucil screen, is due to an IAP insertion with exon skipping. Genomics42, 479–482 (1997). ArticleCAS Google Scholar
Hamilton, B.A. et al. The vibrator mutation causes neurodegeneration via reduced expression of PITPα: positional complementation cloning and extragenic suppression. Neuron18, 711–722 (1997). ArticleCAS Google Scholar
Burt, A.M. Morphologic abnormalities in the postnatal differentiation of CA1 pyramidal cells and granule cells in the hippocampal formation of the ataxic mouse. Anat. Rec.196, 61–69 (1980). ArticleCAS Google Scholar
DiAntonio, A. et al. Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature412, 449–452 (2001). ArticleCAS Google Scholar
Sellin, L.C., Molgo, J., Tornquist, K., Hansson, B. & Thesleff, S. On the possible origin of giant or slow-rising miniature end-plate potentials at the neuromuscular junction. Pflugers Arch.431, 325–334 (1996). ArticleCAS Google Scholar
Wilson, D.F. Influence of presynaptic receptors on neuromuscular transmission in rat. Am. J. Physiol.242, C366–C372 (1982). ArticleCAS Google Scholar
Bhattacharyya, B.J. et al. Desensitization of mutant acetylcholine receptors in transgenic mice reduces the amplitude of neuromuscular synaptic currents. Synapse27, 367–377 (1997). ArticleCAS Google Scholar
Plomp, J.J. et al. Abnormal transmitter release at neuromuscular junctions of mice carrying the tottering α1A Ca2+ channel mutation. Brain123, 463–471 (2000). Article Google Scholar
Washbourne, P. et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat. Neurosci.5, 19–26 (2002). ArticleCAS Google Scholar
Duchen, L.W. & Strich, S.J. The effects of botulinum toxin on the pattern of innervation of skeletal muscle in the mouse. Q. J. Exp. Physiol. Cogn. Med. Sci.53, 84–89 (1968). CASPubMed Google Scholar
Katz, B. & Thesleff, S. On the factors which determine the amplitude of the “miniature end plate potentials”. J. Physiol.137, 267–278 (1957). ArticleCAS Google Scholar
Katz, B. & Miledi, R. The role of calcium in neuromuscular facilitation. J. Physiol.195, 481–492 (1968). ArticleCAS Google Scholar
Matilla, A. et al. Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation. J. Neurosci.15, 5508–5516 (1998). Article Google Scholar
Silva, A.J. et al. Impaired learning in mice with abnormal short-lived plasticity. Curr. Biol.1, 1509–1518 (1996). Article Google Scholar
Chain, D.G., Schwartz, J.H. & Hegde, A.N. Ubiquitin-mediated proteolysis in learning and memory. Mol. Neurobiol.20, 125–142 (1999). ArticleCAS Google Scholar
Rosahl, T.W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature375, 488–493 (1995). ArticleCAS Google Scholar
Detera-Wadleigh, S.D. et al. A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2. Proc. Natl Acad. Sci. USA96, 5604–5609 (1999). ArticleCAS Google Scholar
Schwab, S.G. et al. Support for a chromosome 18p locus conferring susceptibility to functional psychoses in families with schizophrenia, by association and linkage analysis. Am. J. Hum. Genet.63, 1139–1152 (1998). ArticleCAS Google Scholar
Wilson, S.M. et al. Mutations in Cdh23 cause nonsyndromic hearing loss in waltzer mice. Genomics74, 228–233 (2001). ArticleCAS Google Scholar
Hollingsworth, E.B. et al. Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3′:5′-monophosphate-generating systems, receptors, and enzymes. J. Neurosci.5, 2240–2253 (1985). ArticleCAS Google Scholar
Dionne, V.E. & Stevens, C.F. Voltage dependence of agonist effectiveness at the frog neuromuscular junction: resolution of a paradox. J. Physiol.251, 245–270 (1975). ArticleCAS Google Scholar