Functional exploration of the C. elegans genome using DNA microarrays (original) (raw)

References

  1. The C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).
  2. Costanzo, M.C. et al. The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res. 28, 73–76 (2000).
    Article CAS Google Scholar
  3. Gaudet, J. & Mango, S.E. Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science 295, 821–825 (2001).
    Article Google Scholar
  4. Reinke, V. et al. A global profile of germline gene expression in C. elegans. Mol. Cell 6, 605–616 (2000).
    Article CAS Google Scholar
  5. Colaiácovo, M.P. et al. A targeted RNAi screen for genes involved in chromosome morphogenesis and nuclear organization in the C. elegans germ line. Genetics 162, 113–128 (2002).
    Google Scholar
  6. MacQueen, A.J., Colaiacovo, M.P., McDonald, K. & Villeneuve, A.M. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 16, 2428–2442 (2002).
    Article CAS Google Scholar
  7. Horner, M.A. et al. pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev. 12, 1947–1952 (1998).
    Article CAS Google Scholar
  8. Roy, P.J., Stuart, J.M., Lund, J. & Kim, S.K. Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature 418, 975–979 (2002).
    Article CAS Google Scholar
  9. Gorlach, M., Burd, C.G. & Dreyfuss, G. The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. Exp. Cell Res. 211, 400–407 (1994).
    Article CAS Google Scholar
  10. Christensen, M. et al. A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron 33, 503–514 (2002).
    Article CAS Google Scholar
  11. Zhang, Y. et al. Identification of genes expressed in C. elegans touch receptor neurons. Nature 418, 331–335 (2002).
    Article CAS Google Scholar
  12. Way, J.C. & Chalfie, M. mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 54, 5–16 (1988).
    Article CAS Google Scholar
  13. Kim, S.K. et al. A gene expression map for Caenorhabditis elegans. Science 293, 2087–2092 (2001).
    Article CAS Google Scholar
  14. Kelly, W.G. et al. X-chromosome silencing in the germline of C. elegans. Development 129, 479–492 (2002).
    CAS Google Scholar
  15. Kelly, W.G. & Fire, A. Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development 125, 2451–2456 (1998).
    CAS Google Scholar
  16. Holdeman, R., Nehrt, S. & Strome, S. MES-2, a maternal protein essential for viability of the germline in Caenorhabditis elegans, is homologous to a Drosophila Polycomb group protein. Development 125, 2457–2467 (1998).
    CAS Google Scholar
  17. Korf, I., Fan, Y. & Strome, S. The Polycomb group in Caenorhabditis elegans and maternal control of germline development. Development 125, 2469–2478 (1998).
    CAS Google Scholar
  18. Fong, Y., Bender, L., Wang, W. & Strome, S. Regulation of the different chromatin states of autosomes and X chromosomes in the germ line of C. elegans. Science 296, 2235–2238 (2002).
    Article CAS Google Scholar
  19. Blumenthal, T. Gene clusters and polycistronic transcription in eukaryotes. BioEssays 20, 480–487 (1998).
    Article CAS Google Scholar
  20. Blumenthal, T. et al. A global analysis of Caenorhabditis elegans operons. Nature 417, 851–854 (2002).
    Article CAS Google Scholar
  21. von Mering, C. & Bork, P. Teamed up for transcription. Nature 417, 797–798 (2002).
    Article CAS Google Scholar
  22. Hill, A.A., Hunter, C.P., Tsung, B.T., Tucker-Kellogg, G. & Brown, E.L. Genomic analysis of gene expression in C. elegans. Science 290, 809–812 (2000).
    Article CAS Google Scholar
  23. Jiang, M., Ryu, J., Kiraly, M., Duke, K., Reinke, V. & Kim, S.K. Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 98, 218–223 (2001).
    Article CAS Google Scholar
  24. Lund, J. et al. Transcriptional profile of aging in C. elegans. Curr. Biol. 12, 1566–1573 (2002).
    Article CAS Google Scholar
  25. Lynch, A.S., Briggs, D. & Hope, I.A. Developmental expression pattern screen for genes predicted in the C. elegans genome sequencing project. Nature Genet. 11, 309–313 (1995).
    Article CAS Google Scholar
  26. Jansen, G., Hazendonk, E., Thijssen, K.L. & Plasterk, R.H. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nat. Genet. 17, 119–121 (1997).
    Article CAS Google Scholar
  27. Hunter, C.P. Gene silencing: shrinking the black box of RNAi. Curr. Biol. 9, R440–R442 (1999).
    Article CAS Google Scholar
  28. Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000).
    Article CAS Google Scholar
  29. Fraser, A.G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).
    Article CAS Google Scholar
  30. Piano, F., Schetter, A.J., Mangone, M., Stein, L. & Kemphues, K.J. RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr. Biol. 10, 1619–1622 (2000).
    Article CAS Google Scholar
  31. Maeda, I., Kohara, Y., Yamamoto, M. & Sugimoto, A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol. 11, 171–176 (2001).
    Article CAS Google Scholar
  32. Reboul, J. et al. Open-reading-frame sequence tags (OSTs) support the existence of at least 17,300 genes in C. elegans. Nature Genet. 27, 332–336 (2001).
    Article CAS Google Scholar
  33. Walhout, A.J. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122 (2000).
    Article CAS Google Scholar
  34. Boulton, S.J. et al. Combined functional genomic maps of the C. elegans DNA damage response. Science 295, 127–131 (2002).
    Article CAS Google Scholar
  35. Piano, F. et al. Gene clustering based on RNAi phenotypes of ovary-enriched genes in C. elegans. Current Biol. (in press).
  36. Baugh, L.R., Hill, A.A., Brown, E.L. & Hunter, C.P. Quantitative analysis of mRNA amplification by in vitro transcription. Nucleic Acids. Res. 29, E29 (2001).
    Article CAS Google Scholar
  37. Ge, H., Liu, Z., Church, G.M. & Vidal, M. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nature Genet. 29, 482–486 (2002).
    Article Google Scholar
  38. Kemmeren, P. et al. Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol. Cell 9, 1133–1143 (2002).
    Article CAS Google Scholar
  39. Qian, J., Dolled-Filhart, M., Lin, J., Yu, H., & Gerstein, M. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J. Mol. Biol. 14, 1053–1066 (2001).
    Article Google Scholar
  40. Wells, J. & Farnham, P.J. Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods 26, 48–56 (2002).
    Article CAS Google Scholar
  41. van Steensel, B., Delrow, J. & Henikoff, S. Chromatin profiling using targeted DNA adenine methyltransferase. Nature Genet. 27, 304–308 (2001).
    Article CAS Google Scholar

Download references