CTCF maintains differential methylation at the Igf2/H19 locus (original) (raw)

References

  1. Thorvaldson, J.L., Duran, K.L. & Bartolomei, M.S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of _H1_9 and Igf2. Genes Dev. 12, 3693–3702 (1998).
    Article Google Scholar
  2. Srivastava, M. et al. H19 and Igf2 monoallelic expression is regulated in two distinct ways by a shared _cis_-acting regulatory region upstream of H19. Genes Dev. 14, 1186–1195 (2000).
    CAS PubMed PubMed Central Google Scholar
  3. Bell, A.C. & Felsenfeld, G. Modulation of an CTCF-dependent enhancer boundary by DNA methylation controls imprinting of the Igf2 gene. Nature 405, 482–485 (2000).
    Article CAS PubMed Google Scholar
  4. Hark, A.T. et al. CTCF mediates methylation-sensitive enhancer blocking activity at the H19/Igf2 locus. Nature 405, 486–489 (2000).
    Article CAS PubMed Google Scholar
  5. Kaffer, C.R. et al. A transcriptional insulator at the imprinted H19/Igf2 locus. Genes Dev. 14, 1908–1919 (2000).
    CAS PubMed PubMed Central Google Scholar
  6. Kanduri, C. et al. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr. Biol. 10, 853–856 (2000).
    Article CAS PubMed Google Scholar
  7. Bunting, M., Bernstein, K.E., Greer, J.M., Capecchi, M.R. & Thomas, K.R. Targeting genes for self-excision in the germ line. Genes Dev. 13, 1524–1528 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  8. Hoess, R.H., Wierzbicki, A. & Abremski, K. The role of the _lox_P spacer region in P1 site-specific recombination. Nucleic Acids Res. 14, 2287–2300 (1986).
    Article CAS PubMed PubMed Central Google Scholar
  9. Olek, A. & Walter, J. The pre-implantation ontogeny of the H19 methylation imprint. Nat. Genet. 17, 275–276 (1997).
    Article CAS PubMed Google Scholar
  10. Tremblay, K.D., Saam, J.R., Ingram, R.S., Tilghman, S.M. & Bartolomei, M.S. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat. Genet. 9, 407–413 (1995).
    Article CAS PubMed Google Scholar
  11. Bourc'his, D., Xu, G.L., Lin, C.S., Bollman, B. & Bestor, T.H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001).
    Article CAS PubMed Google Scholar
  12. Hata, K., Okano, M., Lei, H. & Li, E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983–1993 (2002).
    CAS PubMed Google Scholar
  13. Leighton, P.A., Ingram, R.S., Eggenschwiler, J., Efstratiadis, A. & Tilghman, S.M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34–39 (1995).
    Article CAS PubMed Google Scholar
  14. Thorvaldsen, J.L., Mann, M.R., Nwoko, O., Duran, K.L. & Bartolomei, M.S. Analysis of sequence upstream of the endogenous H19 gene reveals elements both essential and dispensable for imprinting. Mol. Cell. Biol. 22, 2450–2462 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  15. Chao, W., Huynh, K.D., Spencer, R.J., Davidow, L.S. & Lee, J.T. CTCF, a candidate _trans_-acting factor for X-inactivation choice. Science 295, 345–347 (2002).
    Article CAS PubMed Google Scholar
  16. Birger, Y., Shemer, R., Perk, J. & Razin, A. The imprinting box of the mouse Igf2r gene. Nature 397, 84–88 (1999).
    Article CAS PubMed Google Scholar
  17. Brandeis, M. et al. Sp1 elements protect a CpG island from de novo methylation. Nature 371, 435–438 (1994).
    Article CAS PubMed Google Scholar
  18. Macleod, D., Charlton, J., Mullins, J. & Bird, A.P. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8, 2282–2292 (1994).
    Article CAS PubMed Google Scholar
  19. Jirtle, R.L. Genomic imprinting and cancer. Exp. Cell Res. 248, 18–24 (1999).
    Article CAS PubMed Google Scholar
  20. Jones, B.K., Levorse, J. & Tilghman, S.M. Igf2 imprinting does not require its own DNA methylation or H19 RNA. Genes Dev. 12, 2200–2207 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  21. Ramirez-Solis, R. et al. Genomic DNA microextraction: a method to screen numerous samples. Anal. Biochem. 201, 331–335 (1992).
    Article CAS PubMed Google Scholar
  22. Clark, S.J., Harrison, J., Paul, C.L. & Frommer, M. High-sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  23. Tremblay, K.D., Duran, K.L. & Bartolomei, M.S. A 5′ two kilobase pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol. Cell. Biol. 17, 4322–4329 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  24. Warnecke, P.M. et al. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res. 25, 4422–4426 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  25. Olek, A., Oswald, J. & Walter, J. A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. 24, 5064–5066 (1996).
    Article CAS PubMed PubMed Central Google Scholar

Download references