Halevy, H.A. CRC Handbook of Flowering (CRC Press, Boca Raton, 1985). Google Scholar
Long, S.P. & Woodward, F.I. (eds.). Plants and Temperature (Cambridge University Press, Cambridge, 1988). Google Scholar
Sparks, T.H., Jeffree, E.P. & Jeffree, C.E. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int. J. Biometeorol.44, 82–87 (2000). ArticleCASPubMed Google Scholar
Menzel, A., Estrella, N. & Fabian, P. Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Global Change Biol.7, 657–666 (2001). Article Google Scholar
Fitter, A.H. & Fitter, R.S. Rapid changes in flowering time in British plants. Science296, 1689–1691 (2002). ArticleCASPubMed Google Scholar
Koornneef, M., Hanhart, C.J. & van der Veen, J.H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet.229, 57–66 (1991). ArticleCASPubMed Google Scholar
Koornneef, M., Alonso-Blanco, C., Blankestijn-de Vries, H., Hanhart, C.J. & Peeters, A.J.M. Genetic interactions among late-flowering mutants of Arabidopsis. Genetics148, 885–892 (1998). CASPubMedPubMed Central Google Scholar
Wilson, R.N., Heckman, J.W. & Somerville, C.R. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol.100, 403–408 (1992). ArticleCASPubMedPubMed Central Google Scholar
Guo, H., Yang, H., Mockler, T.C. & Lin, C. Regulation of flowering time by Arabidopsis photoreceptors. Science279, 1360–1363 (1998). ArticleCASPubMed Google Scholar
Macknight, R. et al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell89, 737–745 (1997). ArticleCASPubMed Google Scholar
Whitelam, G.C. et al. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell5, 757–768 (1993). ArticleCASPubMedPubMed Central Google Scholar
Ahmad, M. & Cashmore, A.R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature366, 162–166 (1993). ArticleCASPubMed Google Scholar
Reed, J.W., Nagatani, A., Elich, T.D., Fagan, M. & Chory, J. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol.104, 1139–1149 (1994). ArticleCASPubMedPubMed Central Google Scholar
Mockler, T.C., Guo, H., Yang, H., Duong, H. & Lin, C. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development126, 2073–2082 (1999). CASPubMed Google Scholar
Bagnall, D.J., King, R.W. & Hangarter, R.P. Blue-light promotion of flowering is absent in hy4 mutants of Arabidopsis. Planta200, 278–280 (1996). ArticleCASPubMed Google Scholar
Michaels, S.D. & Amasino, R.M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell11, 949–956 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sheldon, C.C. et al. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell11, 445–458 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J. & Dennis, E.S. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc. Natl. Acad. Sci. USA97, 3753–3758 (2000). ArticleCASPubMedPubMed Central Google Scholar
Michaels, S.D. & Amasino, R.M. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell13, 935–941 (2001). ArticleCASPubMedPubMed Central Google Scholar
Samach, A. et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science288, 1613–1616 (2000). ArticleCASPubMed Google Scholar
Lee, H. et al. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev.14, 2366–2376 (2000). ArticleCASPubMedPubMed Central Google Scholar
Borner, R. et al. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J.24, 591–599 (2000). ArticleCASPubMed Google Scholar
Kardailsky, I. et al. Activation tagging of the floral inducer FT. Science286, 1962–1965 (1999). ArticleCASPubMed Google Scholar
Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M. & Araki, T. A pair of related genes with antagonistic roles in mediating flowering signals. Science286, 1960–1962 (1999). ArticleCASPubMed Google Scholar
Suárez-López, P. et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature410, 1116–1120 (2001). ArticlePubMed Google Scholar
Johansson, J. et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell110, 551–561 (2002). ArticlePubMed Google Scholar
Harmer, S.L. et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science290, 2110–2113 (2000). ArticleCASPubMed Google Scholar