A thermosensory pathway controlling flowering time in Arabidopsis thaliana (original) (raw)

References

  1. Simpson, G.G. & Dean, C. Arabidopsis, the Rosetta stone of flowering time? Science 296, 285–289 (2002).
    Article CAS PubMed Google Scholar
  2. Intergovernmental Panel on Climate Change (ed.) Climate Change 2001: Synthesis Report (Cambridge Univ. Press, Cambridge, 2002).
  3. Halevy, H.A. CRC Handbook of Flowering (CRC Press, Boca Raton, 1985).
    Google Scholar
  4. Long, S.P. & Woodward, F.I. (eds.). Plants and Temperature (Cambridge University Press, Cambridge, 1988).
    Google Scholar
  5. Sparks, T.H., Jeffree, E.P. & Jeffree, C.E. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int. J. Biometeorol. 44, 82–87 (2000).
    Article CAS PubMed Google Scholar
  6. Menzel, A., Estrella, N. & Fabian, P. Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Global Change Biol. 7, 657–666 (2001).
    Article Google Scholar
  7. Fitter, A.H. & Fitter, R.S. Rapid changes in flowering time in British plants. Science 296, 1689–1691 (2002).
    Article CAS PubMed Google Scholar
  8. Koornneef, M., Hanhart, C.J. & van der Veen, J.H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57–66 (1991).
    Article CAS PubMed Google Scholar
  9. Koornneef, M., Alonso-Blanco, C., Blankestijn-de Vries, H., Hanhart, C.J. & Peeters, A.J.M. Genetic interactions among late-flowering mutants of Arabidopsis. Genetics 148, 885–892 (1998).
    CAS PubMed PubMed Central Google Scholar
  10. Wilson, R.N., Heckman, J.W. & Somerville, C.R. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100, 403–408 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  11. Guo, H., Yang, H., Mockler, T.C. & Lin, C. Regulation of flowering time by Arabidopsis photoreceptors. Science 279, 1360–1363 (1998).
    Article CAS PubMed Google Scholar
  12. Macknight, R. et al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89, 737–745 (1997).
    Article CAS PubMed Google Scholar
  13. Whitelam, G.C. et al. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5, 757–768 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  14. Ahmad, M. & Cashmore, A.R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366, 162–166 (1993).
    Article CAS PubMed Google Scholar
  15. Reed, J.W., Nagatani, A., Elich, T.D., Fagan, M. & Chory, J. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol. 104, 1139–1149 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  16. Mockler, T.C., Guo, H., Yang, H., Duong, H. & Lin, C. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126, 2073–2082 (1999).
    CAS PubMed Google Scholar
  17. Bagnall, D.J., King, R.W. & Hangarter, R.P. Blue-light promotion of flowering is absent in hy4 mutants of Arabidopsis. Planta 200, 278–280 (1996).
    Article CAS PubMed Google Scholar
  18. Michaels, S.D. & Amasino, R.M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949–956 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  19. Sheldon, C.C. et al. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11, 445–458 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  20. Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J. & Dennis, E.S. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc. Natl. Acad. Sci. USA 97, 3753–3758 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  21. Michaels, S.D. & Amasino, R.M. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13, 935–941 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  22. Samach, A. et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288, 1613–1616 (2000).
    Article CAS PubMed Google Scholar
  23. Lee, H. et al. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 14, 2366–2376 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  24. Borner, R. et al. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J. 24, 591–599 (2000).
    Article CAS PubMed Google Scholar
  25. Kardailsky, I. et al. Activation tagging of the floral inducer FT. Science 286, 1962–1965 (1999).
    Article CAS PubMed Google Scholar
  26. Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M. & Araki, T. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960–1962 (1999).
    Article CAS PubMed Google Scholar
  27. Suárez-López, P. et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116–1120 (2001).
    Article PubMed Google Scholar
  28. Xiong, L., Schumaker, K.S. & Zhu, J.K. Cell signaling during cold, drought, and salt stress. Plant Cell 14, S165–S183 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  29. Johansson, J. et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561 (2002).
    Article PubMed Google Scholar
  30. Harmer, S.L. et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113 (2000).
    Article CAS PubMed Google Scholar

Download references