Genes responsible for human hereditary deafness: symphony of a thousand (original) (raw)
Denk, W., Holt, J.R., Shepherd, G.M.G. & Corey, D.P. Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron15, 1311–1321 (1995). CASPubMed Google Scholar
Hudspeth, A.J. & Gillespie, P.G. Pulling springs to tune transduction: adaptation by hair cells. Neuron12, 1–9 (1994). CASPubMed Google Scholar
Marazita, M.L. et al. Genetic epidemiological studies of early-onset deafness in the U.S. school-age population. Am. J. Med. Genet.46, 486–491 (1993). CASPubMed Google Scholar
Gorlin, R.J., Toriello, H.V. & Cohen, M.M. Hereditary hearing loss and its syndromes. (Oxford University Press, Oxford, 1995). Google Scholar
Chung, C.S., Robison, O.W. & Morton, N.E. A note on deaf mutism. Ann. Hum. Genet.23, 357–366 (1959). CASPubMed Google Scholar
Leon, P.E., Raventos, H., Lynch, E., Morrow, J. & King, M.-C. The gene for an inherited form of deafness maps to chromosome 5q31. Proc. Natl. Acad. Sci. USA89, 5181–5184 (1992). CASPubMedPubMed Central Google Scholar
Reardon, W. et al. A multipedigree linkage study of X-linked deafness: linkage to Xq13–q21 and evidence for genetic heterogeneity. Genomics11, 885–894 (1991). CASPubMed Google Scholar
Guyer, M.S. & Collins, F.S. How is the Human Genome Project doing, and what have we learned so far? Proc. Natl. Acad. Sci. USA92, 10841–10848 (1995). CASPubMedPubMed Central Google Scholar
Ballabio, A. The rise and fall of positional cloning? Nature Genet.3, 277–279 (1993). CASPubMed Google Scholar
Tassabehji, M. et al. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature355, 635–636 (1992). ArticleCASPubMed Google Scholar
Tassabehji, M., Newton, V.E. & Read, A.P. Waardenburg syndrome type 2 caused by mutations in the human microphtalmia (MITF) gene. Nature Genet.8, 251–255 (1994). CASPubMed Google Scholar
Gibson, F. et al. A type VII myosin encoded by the mouse deafness gene Shaker-1 . Nature374, 62–64 (1995). CASPubMed Google Scholar
Weil, D. et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature374, 60–61 (1995). ArticleCASPubMed Google Scholar
Coyle, B. et al. Pendred syndrome (goitre and sensorineural hearing loss) maps to chromosome 7 in the region containing the nonsyndromic deafness gene DFNB4 . Nature Genet.12, 421–423 (1996). CASPubMed Google Scholar
Sheffield, V.C. et al. Pendred syndrome maps to chromosome 7q21–34 and is caused by an intrinsic defect in thyroid iodine organification. Nature Genet.12, 424–426 (1996). CASPubMed Google Scholar
Jin, H. et al. A novel X-linked gene, DDR shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nature Genet.14, 177–180 (1996). CASPubMed Google Scholar
Wilson, P.J. et al. Hunter syndrome: isolation of an iduronate-2-sulfatase cDNA clone and analysis of patient DNA. Proc. Natl. Acad. Sci. USA87, 8531–8535 (1990). CASPubMedPubMed Central Google Scholar
Scott, H.S. et al. Human alpha-L-iduronidase: cDNA isolation and expression. Proc. Natl. Acad. Sci. USA88, 9695–9699 (1991). CASPubMedPubMed Central Google Scholar
Baldwin, C.T., Hoth, C.F., Amos, J.A., da-Silva, E.O. & Milunsky, A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature355, 637–638 (1992). ArticleCASPubMed Google Scholar
Barker, D.F. et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science248, 1224–1226 (1990). CASPubMed Google Scholar
Hostikka, S.L. et al. Identification of a distinct type IV collagen α chain with restricted kidney distribution and assignment of its gene to the locus of X chromosome-linked Alport syndrome. Proc. Natl. Acad. Sci. USA87, 1606–1610 (1990). CASPubMedPubMed Central Google Scholar
Ahmad, N.N. et al. Stop codon in the procollagen II gene (COL2A1) in a family with the Stickler syndrome (arthro-ophthalmopathy). Proc. Natl. Acad. Sci. USA88, 6624–6627 (1991). CASPubMedPubMed Central Google Scholar
Mochizuki, T. et al. Identification of mutations in the α3(IV) and α4(IV) collagen genes in autosomal recessive Alport syndrome. Nature Genet.8, 77–81 (1994). CASPubMed Google Scholar
Edery, P. et al. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nature Genet.12, 442–444 (1996). CASPubMed Google Scholar
Hofstra, R.M.W. et al. A homozygous mutation in the endotheiin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah-Waardenburg syndrome). Nature Genet.12, 445–447 (1996). CASPubMed Google Scholar
Tremblay, P., Kessel, M. & Gruss, P. A transgenic neuroanatomical marker identifies cranial neural crest deficiencies associated with the Pax3 mutant Splotch. Dev. Biol.171, 317–329 (1995). CASPubMed Google Scholar
Baynash, A.G. et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell79, 1277–1285 (1994). CASPubMed Google Scholar
Lahav, R., Ziller, C., Dupin, E. & Le Douarin, N. Endothelin-3 promotes neural crest cell proliferation and mediates a vast increase in melanocyte number in culture. Proc. Natl. Acad. Sci. USA93, 3892–3897 (1996). CASPubMedPubMed Central Google Scholar
Hosoda, K. et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell79, 1267–1276 (1994). CASPubMed Google Scholar
Pavan, W.J. & Tilghman, S.M. Piebald lethal (s') acts early to disrupt the development of neural crest-derived melanocytes. Proc. Natl. Acad. Sci. USA91, 7159–7163 (1994). CASPubMedPubMed Central Google Scholar
Motohashi, H., Hozawa, K., Oshima, T., Takeuchi, T. & Takasaka, T. Dysgenesis of melanocytes and cochlear dysfunction in mutant microphthalmia (mi) mice. Hearing Res.80, 10–20 (1994). CAS Google Scholar
Hemesath, T.J. et al. Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev.8, 2770–2780 (1994). CASPubMed Google Scholar
Morreale de Escobar, G., Obregon, M.J. & Escobar del Rey, F. Fetal and maternal thyroid hormones. Hormone Res.26, 12–27 (1987). CASPubMed Google Scholar
Van Middlesworth, L. & Norris, C.H. Audiogenic seizures and cochlear damage in rats after perinatal antithyroid treatment. Endocrinology106, 1686–1690 (1980). CASPubMed Google Scholar
O'Malley, B.W., Jr., Li, D. & Turner, D.S. Hearing loss and cochlear abnormalities in the congenital hypothyroid (hyt/hyt) mouse. Hearing Res.88, 181–189 (1995). Google Scholar
Takeda, K., Balzano, S., Sakurai, A., De Groot, L.J. & Refetoff, S. Screening of nineteen unrelated families with generalized resistance to thyroid hormone for known point mutations in the thyroid hormone receptor beta gene and the detection of a new mutation. J. Clin. Invest.87, 496–502 (1991). CASPubMedPubMed Central Google Scholar
Bradley, D.J., Towle, H.C. & Young, W.S.R. Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo . Proc. Natl. Acad. Sci. USA91, 439–443 (1994). CASPubMedPubMed Central Google Scholar
Forrest, D., Erway, L.C., Ng, L., Altschuler, R. & Curran, T. Thyroid hormone receptor β is essential for development of auditory function. Nature Genet.13, 354–357 (1996). CASPubMed Google Scholar
Steel, K.P. & Smith, R.J.H. Normal hearing in Splotch (Sp/+) the mouse homologue of Waardenburg syndrome type 1. Nature Genet.2, 75–79 (1992). CASPubMed Google Scholar
Geissler, E.N., Ryan, M.A. & Housman, D.E. The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell55, 185–192 (1988). CASPubMed Google Scholar
Flanagan, J.G., Chan, D.C. & Leder, P. Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant. Cell64, 1025–1035 (1991). CASPubMed Google Scholar
Bernex, F. et al. Spatial and temporal patterns of _c-Kit_-expressing cells in WlacZ/+ and wlacZ/WlacZ mouse embryos. Development122, 3023–3033 (1996). CASPubMed Google Scholar
EI-Amraoui, A. et al. Human Usher IB/mouse shaker-1; the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells. Hum. Mol. Genet.5 1171–1178 (1996). Google Scholar
Prezant, R.T., Shohat, M., Jabber, L., Pressman, S. & Fischel-Ghodsian, N. Biochemical characterization of a pedigree with mitochondrially inherited deafness. Am. J. Med. Genet.44, 465–472 (1992). CASPubMed Google Scholar
Reid, F.M., Vernham, G.A. & Jacobs, H.T. A novel mitochondrial point mutation in a maternal pedigree with sensorineural deafness. Hum. Mutat.3, 243–247 (1994). CASPubMed Google Scholar
Morton, N.E. Genetic epidemiology of hearing impairment. in Genetics of Hearing Impairment630, 16–31 (The New York Acad. Sci., New York, 1991). CAS Google Scholar
Guilford, P. et al. A non-syndromic form of neurosensory, recessive deafness maps to the pericentromeric region of chromosome 13q. Nature Genet.6, 24–28 (1994). CASPubMed Google Scholar
Friedman, T.B. et al. A gene for congenital, recessive deafness DFNB3 maps to the pericentromeric region of chromosome 17. Nature Genet.9, 86–91 (1995). CASPubMed Google Scholar
Fukushima, K. et al. Consanguineous nuclear families used to identify a new locus for recessive non-syndromic hearing loss on 14q. Hum. Mol. Genet.4, 1643–1648 (1995). CASPubMed Google Scholar
Lander, E.S. & Botstein, D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science236, 1567–1570 (1987). CASPubMed Google Scholar
Coucke, P. et al. Linkage of autosomal dominant hearing loss to the short arm of chromosome 1 in two families. N. Engl. J. Med.331, 425–431 (1994). CASPubMed Google Scholar
de Kok, Y.J.M. et al. Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4 . Science267, 685–688 (1995). CASPubMed Google Scholar
Steel, K.P. Inherited hearing defects in mice. Annu. Rev. Genet.29, 675–701 (1995). CASPubMed Google Scholar
Keats, B.J. et al. The deafness locus (dn) maps to mouse chromosome 19. Mamm. Genome6, 8–10 (1995). CASPubMed Google Scholar
Huygen, P.L., van Rijn, P.M., Cremers, C.W. & Theunissen, E.J. The vestibulo-ocular reflex in pupils at a Dutch school for the hearing impaired; findings relating to acquired causes. Int. J. Pediatr. Otorhinolaryngol.25, 39–47 (1993). CASPubMed Google Scholar
Nadeau, J.H., Kosowsky, M. & Steel, K.P. Comparative gene mapping, genome duplication, and the genetics of hearing. in Genetics of Hearing Impairment630, 49–67 (The New York Acad. Sci., New York, 1991). Google Scholar
DeBry, R.W. & Seldin, M.F. Human/mouse homology relationships. Genomics33, 337–351 (1996). CASPubMed Google Scholar
Dryja, T.P. & Li, T. Molecular genetics of retinitis pigmentosa. Hum. Mol. Genet. 1739–1743 (1995). CASPubMed Google Scholar
Fuchs, S. et al. A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nature Genet.10, 360–362 (1995). CASPubMed Google Scholar
Huang, S.H. et al. Autosomal recessive retinitis pigmentosa caused by mutations in the alpha subunit of rod cGMP phosphodiesterase. Nature Genet.11, 468–471 (1995). CASPubMed Google Scholar
Robertson, N.G., Khetarpal, U., Gutierrez-Espeleta, G.A., Bieber, F.R. & Morton, C.C. Isolation of novel and known genes from a human fetal cochlear cDNA library using subtractive hybridization and differential screening. Genomics23, 42–50 (1994). CASPubMed Google Scholar
Tilney, L.G., Tilney, M.S. & Guild, G.M. Factin bundles in Drosophila bristles. I. Two filament cross-links are involved in bundling. J. Cell Biol.130, 629–638 (1995). CASPubMed Google Scholar
Du, H., Gu, G., William, C.M. & Chalfie, M. Extracellular proteins needed for C. elegans mechanosensation. Neuron16, 183–194 (1996). CASPubMed Google Scholar
Bargmann, C.I. Molecular mechanisms of mechanosensation? Cell78, 729–731 (1994). CASPubMed Google Scholar
Gillespie, P.G., Wagner, M.C. & Hudspeth, A.J. Identification of a 120 kd hair-bundle myosin located near stereociliary tips. Neuron11, 581–594 (1993). CASPubMed Google Scholar
Avraham, K.B. et al. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nature Genet.11, 369–375 (1995). CASPubMed Google Scholar
Hasson, T., Heintzelman, M.B., Santos-Sacchi, J., Corey, D.R. & Mooseker, M.S. Expression in cochlea and retina of myosin Vila, the gene product defective in Usher syndrome type 1B. Proc. Natl. Acad. Sci. USA92, 9815–9819 (1995). CASPubMedPubMed Central Google Scholar
Weil, D. et al. Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia. Proc. Natl. Acad. Sci. USA93, 3232–3237 (1996). CASPubMedPubMed Central Google Scholar
Chaïb, H. et al. A gene responsible for a dominant form of neurosensory non-syndromic deafness maps to the NSRD1 recessive deafness gene interval. Hum. Mol. Genet.3, 2219–2222 (1994). PubMed Google Scholar
Guilford, P. et al. A human gene responsible for neurosensory, nonsyndromic recessive deafness is a candidate homologue of the mouse sh-1 gene. Hum. Mol. Genet.3, 989–993 (1994). CASPubMed Google Scholar
Tamagawa, Y. et al. A gene for a dominant form of non-syndromic sensorineural deafness (DFNA11) maps within the region containing the DFNB2 recessive deafness gene. Hum. Mol. Genet.5, 849–852 (1996). CASPubMed Google Scholar
Manolis, E.N. et al. A gene for non-syndromic autosomal dominant progressive postlingual sensorineural hearing loss maps to chromosome 14q12–13. Hum. Mol. Genet.5, 1047–1050 (1996). CASPubMed Google Scholar
Baldwin, C.T. Linkage of congenital, recessive deafness (DFNB4) to chromosome 7q31 and evidence for genetic heterogeneity in the Middle Eastern Druze population. Hum. Mol. Genet.4, 1637–1642 (1995). CASPubMed Google Scholar
Corey, D.P. & Breakefield, X.O. Transcription factors in inner ear development. Proc. Natl. Acad. Sci. USA91, 433–436 (1994). CASPubMedPubMed Central Google Scholar
Ernfors, P. Van de Water, T., Loring, J. & Jaenisch, R. Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron14, 1153–1164 (1995). CASPubMed Google Scholar
Yamashita, H. & Oesterle, E.G. Induction of cell proliferation in mammalian inner-ear sensory epithelia by transforming growth factor alpha and epidermal growth factor. Proc. Natl. Acad. Sci. USA92, 3152–3155 (1995). CASPubMedPubMed Central Google Scholar
Colvin, J.S., Bohne, B.A., Harding, G.W., McEwen, D.G. & Ornitz, D.M. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nature Genet.12, 390–397 (1996). CASPubMed Google Scholar
Markin, V.S. & Hudspeth, A.J. Gating-spring models of mechanoelectrical transduction by hair cells of the internal ear. Annu. Rev. Biophys. Biomol. Struct.24, 59–83 (1995). CASPubMed Google Scholar
Fukushima, K. et al. An autosomal recessive non-syndromic form of sensorineural hearing loss maps to 3p-DFNB6. Genome Res.5, 305–308 (1995). CASPubMed Google Scholar
Jain, R.K. et al. A human recessive neurosensory nonsyndromic hearing impairment locus is a potential homologue of the murine deafness (dn) locus. Hum. Mol. Genet.4, 2391–2394 (1995). CASPubMed Google Scholar
Veske, A. et al. Autosomal recessive non-syndromic deafness locus (DFNB8) maps on chromosome 21q22 in a large consanguineous kindred from Pakistan. Hum. Mol. Genet.5, 165–168 (1996). CASPubMed Google Scholar
Bonné-Tamir, B. et al. Linkage of congenital recessive deafness (gene DFNB10) to chromosome 21q22.3. Am. J. Hum. Genet.58 1254–1259 (1996). PubMedPubMed Central Google Scholar
Chaïb, H. et al. A gene responsible for a sensorineural nonsyndromic recessive deafness maps to chromosome 2p22–23. Hum. Mol. Genet.5, 155–158 (1996). PubMed Google Scholar
Chaïb, H. et al. Mapping of DFNB12, a gene for a non-syndromal autosomal recessive deafness, to chromosome 10q21-22. Hum. Mol. Genet.5, 1061–1064 (1996). PubMed Google Scholar
Chen, A.H. et al. Linkage of a gene for dominant non-syndromic deafness to chromosome 19. Hum. Mol. Genet.4, 1073–1076 (1995). CASPubMed Google Scholar
Van Camp, G. et al. Localization of a locus for non-syndromic hearing loss (DFNA5) to chromosome 7p. Hum. Mol. Genet.4, 2159–2163 (1995). CASPubMed Google Scholar
Lesperance, M.M. et al. A gene for autosomal dominant nonsyndromic hereditary hearing impairment maps to 4p16.3. Hum. Mol. Genet.4, 1967–1972 (1995). CASPubMed Google Scholar
Fagerheim, T. et al. Identification of a new locus for autosomal dominant nonsyndromic hearing impairment (DFNA7) in a large Norwegian family. Hum. Mol. Genet.5, 1187–1191 (1996). CASPubMed Google Scholar
Kirshhofer, K. et al. Localisation of a gene responsible for an autosomal dominant non-syndromic sensorineural hearing loss to chromosome 15. The Molecular Biology of Hearing and Deafness, Bethesda, USA, October 6–8 (1995).
0'Neill, M.E. et al. A gene for autosomal dominant late-onset progressive non-syndromic hearing loss, DFNA10, maps to chromosome 6. Hum. Mol. Genet.5, 853–856 (1996). CASPubMed Google Scholar
Bach, I. et al. Microdeletions in patients with gusher-associated, X-linked mixed deafness (DFN3). Am. J. Hum. Genet.50, 38–44 (1992). Google Scholar
Lalwani, A.K. et al. A new nonsyndromic X-linked sensorineural hearing impairment linked to Xp21.2. Am. J. Hum. Genet.55, 685–694 (1994). CASPubMedPubMed Central Google Scholar
del Castillo, I. et al. A novel locus for non-syndromic sensorineural deafness (DFN6) maps to chromosome Xp22. Hum. Mol. Genet.5, 1383–1387 (1996). CASPubMed Google Scholar
Scott, D.A. et al. An autosomal recessive nonsyndromic-hearing-loss locus identified by DNA pooling using two inbred Bedouin kindreds. Am. J. Hum. Genet.59, 385–391 (1996). CASPubMedPubMed Central Google Scholar