Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome (original) (raw)

References

  1. DeChiara, T.M., Efstratiadis, A. & Robertson, E.J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345, 78–80 (1990).
    Article CAS Google Scholar
  2. Fitzpatrick, G.V., Soloway, P.D. & Higgins, M.J. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat. Genet. 32, 426–431 (2002).
    Article CAS Google Scholar
  3. Leighton, P., Ingram, R., Eggenswiler, J., Efstratiadis, A. & Tilghman, S. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34–39 (1995).
    Article CAS Google Scholar
  4. Sun, F., Dean, W., Kelsey, G., Allen, N. & Reik, W. Transactivation of IGF2 in a mouse model of Beckwith-Wiedemann syndrome. Nature 389, 809–815 (1997).
    Article CAS Google Scholar
  5. Gaston, V. et al. Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome. Eur. J. Hum. Genet. 9, 409–418 (2001).
    Article CAS Google Scholar
  6. Price, S.M., Stanhope, R., Garrett, C., Preece, M.A. & Trembath, R.C. The spectrum of Silver-Russell syndrome: a clinical and molecular genetic study and new diagnostic criteria. J. Med. Genet. 36, 837–842 (1999).
    CAS PubMed PubMed Central Google Scholar
  7. Hitchins, M.P., Stanier, P., Preece, M.A. & Moore, G.E. Silver-Russell syndrome: a dissection of the genetic aetiology and candidate chromosomal regions. J. Med. Genet. 38, 810–819 (2001).
    Article CAS Google Scholar
  8. Hannula, K., Kere, J., Pirinen, S., Holmberg, C. & Lipsanen-Nyman, M. Do patients with maternal uniparental disomy for chromosome 7 have a distinct mild Silver-Russell phenotype? J. Med. Genet. 38, 273–278 (2001).
    Article CAS Google Scholar
  9. Fisher, A.M. et al. Duplications of chromosome 11p15 of maternal origin result in a phenotype that includes growth retardation. Hum. Genet. 111, 290–296 (2002).
    Article Google Scholar
  10. Eggermann, T. et al. Is maternal duplication of 11p15 associated with Silver-Russell syndrome? J. Med. Genet. 42, e26 (2005).
    Article CAS Google Scholar
  11. Obermann, C. et al. Searching for genomic variants in IGF2 and CDKN1C in Silver-Russell syndrome patients. Mol. Genet. Metab. 82, 246–250 (2004).
    Article CAS Google Scholar
  12. Meyer, E., Wollmann, H.A. & Eggermann, T. Analysis of genomic variants in the KCNQ1OT1 transcript in Silver-Russell syndrome patients. Mol. Genet. Metab. 84, 376–377 (2005).
    Article CAS Google Scholar
  13. Murrell, A. et al. An intragenic methylated region in the imprinted Igf2 gene augments transcription. EMBO Rep. 2, 1101–1106 (2001).
    Article CAS Google Scholar
  14. Engel, N., West, A.G., Felsenfeld, G. & Bartolomei, M.S. Antagonism between DNA hypermethylation and enhancer-blocking activity at the H19 DMD is uncovered by CpG mutations. Nat. Genet. 36, 883–888 (2004).
    Article CAS Google Scholar
  15. Bell, A.C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000).
    Article CAS Google Scholar
  16. Hark, A.T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489 (2000).
    Article CAS Google Scholar
  17. Kanduri, C. et al. The 5′ flank of mouse H19 in an unusual chromatin conformation unidirectionally blocks enhancer-promoter communication. Curr. Biol. 10, 449–457 (2000).
    Article CAS Google Scholar
  18. Schoenherr, C.J., Levorse, J.M. & Tilghman, S.M. CTCF maintains differential methylation at the Igf2/H19 locus. Nat. Genet. 33, 66–69 (2003).
    Article CAS Google Scholar
  19. Fedoriw, A.M., Stein, P., Svoboda, P., Schultz, R.M. & Bartolomei, M.S. Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science 303, 238–240 (2004).
    Article CAS Google Scholar
  20. Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat. Genet. 36, 889–893 (2004).
    Article CAS Google Scholar
  21. Reik, W. et al. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2–H19 domain. Hum. Mol. Genet. 4, 2379–2385 (1995).
    Article CAS Google Scholar
  22. Weksberg, R. et al. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum. Mol. Genet. 11, 1317–1325 (2002).
    Article CAS Google Scholar
  23. Sparago, A. et al. Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome. Nat. Genet. 36, 958–960 (2004).
    Article CAS Google Scholar
  24. Schneid, H. et al. Parental allele specific methylation of the human insulin-like growth factor II gene and Beckwith-Wiedemann syndrome. J. Med. Genet. 30, 353–362 (1993).
    Article CAS Google Scholar
  25. Brannan, C., Dees, E., Ingram, R. & Tilghman, S. The product of the H19 gene may function as an RNA. Mol. Cell. Biol. 10, 28–36 (1990).
    Article CAS Google Scholar
  26. Frevel, M.A., Sowerby, S.J., Petersen, G.B. & Reeve, A.E. Methylation sequencing analysis refines the region of H19 epimutation in Wilms tumor. J. Biol. Chem. 274, 29331–29340 (1999).
    Article CAS Google Scholar
  27. Grunau, C., Clark, S. & Rosenthal, A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 29, E65–5 (2001).
    Article CAS Google Scholar
  28. Dupont, J.M., Tost, J., Jammes, H. & Gut, I.G. De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal. Biochem. 333, 119–127 (2004).
    Article CAS Google Scholar
  29. Ulaner, G.A. et al. CTCF binding at the insulin-like growth factor-II (IGF2)/H19 imprinting control region is insufficient to regulate IGF2/H19 expression in human tissues. Endocrinology 144, 4420–4426 (2003).
    Article CAS Google Scholar
  30. Corpechot, C. et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 35, 1010–1021 (2002).
    Article CAS Google Scholar

Download references