The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells (original) (raw)
Smith, A.G. Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol.17, 435–462 (2001). ArticleCAS Google Scholar
Pera, M.F., Reubinoff, B. & Trounson, A. Human embryonic stem cells. J. Cell Sci.113, 5–10 (2000). CASPubMed Google Scholar
Donovan, P.J. & Gearhart, J. The end of the beginning for pluripotent stem cells. Nature414, 92–97 (2001). ArticleCAS Google Scholar
Loebel, D.A., Watson, C.M., De Young, R.A. & Tam, P.P. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev. Biol.264, 1–14 (2003). ArticleCAS Google Scholar
Scholer, H.R., Ruppert, S., Suzuki, N., Chowdhury, K. & Gruss, P. New type of POU domain in germ line-specific protein Oct-4. Nature344, 435–439 (1990). ArticleCAS Google Scholar
Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell95, 379–391 (1998). ArticleCAS Google Scholar
Niwa, H., Miyazaki, J. & Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet.24, 372–376 (2000). ArticleCAS Google Scholar
Avilion, A.A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev.17, 126–140 (2003). ArticleCAS Google Scholar
Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell113, 643–655 (2003). ArticleCAS Google Scholar
Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell113, 631–642 (2003). ArticleCAS Google Scholar
Pesce, M. & Scholer, H.R. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells19, 271–278 (2001). ArticleCAS Google Scholar
Chambers, I. & Smith, A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene23, 7150–7160 (2004). ArticleCAS Google Scholar
Ng, P. et al. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat. Methods2, 105–111 (2005). ArticleCAS Google Scholar
Wei, C.L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell124, 207–219 (2006). ArticleCAS Google Scholar
Chew, J.L. et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol. Cell. Biol.25, 6031–6046 (2005). ArticleCAS Google Scholar
Mi, H. et al. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res.33, D284–D288 (2005). ArticleCAS Google Scholar
Yeom, Y.I. et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development122, 881–894 (1996). CASPubMed Google Scholar
Pavesi, G., Mauri, G. & Pesole, G. An algorithm for finding signals of unknown length in unaligned DNA sequences. Bioinformatics17 (Suppl.), 207–214 (2001). Article Google Scholar
Down, T.A. & Hubbard, T.J. NestedMICA: sensitive inference of over-represented motifs in nucleic acid sequence. Nucleic Acids Res.33, 1445–1453 (2005). ArticleCAS Google Scholar
Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122, 947–956 (2005). ArticleCAS Google Scholar
Cartwright, P. et al. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development132, 885–896 (2005). ArticleCAS Google Scholar
Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell116, 499–509 (2004). ArticleCAS Google Scholar
Kim, T.H. et al. A high-resolution map of active promoters in the human genome. Nature436, 876–880 (2005). ArticleCAS Google Scholar
Pollack, J.R. & Iyer, V.R. Characterizing the physical genome. Nat. Genet.32, 515–521 (2002). ArticleCAS Google Scholar
Buck, M.J. & Lieb, J.D. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics83, 349–360 (2004). ArticleCAS Google Scholar
Impey, S. et al. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell119, 1041–1054 (2004). CASPubMed Google Scholar
Kim, J., Bhinge, A.A., Morgan, X.C. & Iyer, V.R. Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment. Nat. Methods2, 47–53 (2005). ArticleCAS Google Scholar
Rodda, D.J. et al. Transcriptional regulation of nanog by OCT4 and SOX2. J. Biol. Chem.280, 24731–24737 (2005). ArticleCAS Google Scholar
Kuroda, T. et al. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol. Cell. Biol.25, 2475–2485 (2005). ArticleCAS Google Scholar
Okumura-Nakanishi, S., Saito, M., Niwa, H. & Ishikawa, F. Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J. Biol. Chem.280, 5307–5317 (2005). ArticleCAS Google Scholar
Ambrosetti, D.C., Scholer, H.R., Dailey, L. & Basilico, C. Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4 enhancer. J. Biol. Chem.275, 23387–23397 (2000). ArticleCAS Google Scholar
Tokuzawa, Y. et al. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol. Cell. Biol.23, 2699–2708 (2003). ArticleCAS Google Scholar
Nishimoto, M., Fukushima, A., Okuda, A. & Muramatsu, M. The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol. Cell. Biol.19, 5453–5465 (1999). ArticleCAS Google Scholar
Kornberg, T.B. Understanding the homeodomain. J. Biol. Chem.268, 26813–26816 (1993). CASPubMed Google Scholar
Affolter, M., Schier, A. & Gehring, W.J. Homeodomain proteins and the regulation of gene expression. Curr. Opin. Cell Biol.2, 485–495 (1990). ArticleCAS Google Scholar
Brandenberger, R. et al. MPSS profiling of human embryonic stem cells. BMC Dev. Biol.4, 10 (2004). Article Google Scholar
Wei, C.L. et al. Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem Cells23, 166–185 (2005). ArticleCAS Google Scholar
Martone, R. et al. Distribution of NF-kappaB-binding sites across human chromosome 22. Proc. Natl. Acad. Sci. USA100, 12247–12252 (2003). ArticleCAS Google Scholar
Hanna, L.A., Foreman, R.K., Tarasenko, I.A., Kessler, D.S. & Labosky, P.A. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev.16, 2650–2661 (2002). ArticleCAS Google Scholar
Guo, Y. et al. The embryonic stem cell transcription factors Oct-4 and FoxD3 interact to regulate endodermal-specific promoter expression. Proc. Natl. Acad. Sci. USA99, 3663–3667 (2002). ArticleCAS Google Scholar
Dodge, J.E., Kang, Y.K., Beppu, H., Lei, H. & Li, E. Histone H3–K9 methyltransferase ESET is essential for early development. Mol. Cell. Biol.24, 2478–2486 (2004). ArticleCAS Google Scholar
Luo, J. et al. Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-beta. Nature388, 778–782 (1997). ArticleCAS Google Scholar
Mitsunaga, K. et al. Loss of PGC-specific expression of the orphan nuclear receptor ERR-beta results in reduction of germ cell number in mouse embryos. Mech. Dev.121, 237–246 (2004). ArticleCAS Google Scholar
Adams, I.R. & McLaren, A. Identification and characterisation of mRif1: a mouse telomere-associated protein highly expressed in germ cells and embryo-derived pluripotent stem cells. Dev. Dyn.229, 733–744 (2004). ArticleCAS Google Scholar
Xu, L. & Blackburn, E.H. Human Rif1 protein binds aberrant telomeres and aligns along anaphase midzone microtubules. J. Cell Biol.167, 819–830 (2004). ArticleCAS Google Scholar
Silverman, J., Takai, H., Buonomo, S.B., Eisenhaber, F. & de Lange, T. Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes Dev.18, 2108–2119 (2004). ArticleCAS Google Scholar