A genetic signature of interspecies variations in gene expression (original) (raw)

References

  1. Khaitovich, P. et al. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309, 1850–1854 (2005).
    Article CAS Google Scholar
  2. Ranz, J.M., Castillo-Davis, C.I., Meiklejohn, C.D. & Hartl, D.L. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300, 1742–1745 (2003).
    Article CAS Google Scholar
  3. Rifkin, S.A., Houle, D., Kim, J. & White, K.P. A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression. Nature 438, 220–223 (2005).
    Article CAS Google Scholar
  4. Rifkin, S.A., Kim, J. & White, K.P. Evolution of gene expression in the Drosophila melanogaster subgroup. Nat. Genet. 33, 138–144 (2003).
    Article CAS Google Scholar
  5. Denver, D.R. et al. The transcriptional consequences of mutation and natural selection in Caenorhabditis elegans. Nat. Genet. 37, 544–548 (2005).
    Article CAS Google Scholar
  6. Vuylsteke, M., van Eeuwijk, F., Van Hummelen, P., Kuiper, M. & Zabeau, M. Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics 171, 1267–1275 (2005).
    Article CAS Google Scholar
  7. Kliebenstein, D.J. et al. Genomic survey of gene expression diversity in Arabidopsis thaliana. Genetics 172, 1179–1189 (2006).
    Article Google Scholar
  8. Gasch, A.P. et al. Conservation and evolution of _cis_-regulatory systems in ascomycete fungi. PLoS Biol. 2, e398 (2004).
    Article Google Scholar
  9. Tanay, A., Regev, A. & Shamir, R. Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast. Proc. Natl. Acad. Sci. USA 102, 7203–7208 (2005).
    Article CAS Google Scholar
  10. Ihmels, J. et al. Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309, 938–940 (2005).
    Article CAS Google Scholar
  11. Cliften, P. et al. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301, 71–76 (2003).
    Article CAS Google Scholar
  12. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E.S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003).
    Article CAS Google Scholar
  13. Edwards-Ingram, L.C. et al. Comparative genomic hybridization provides new insights into the molecular taxonomy of the Saccharomyces sensu stricto complex. Genome Res. 14, 1043–1051 (2004).
    Article CAS Google Scholar
  14. Ihmels, J. et al. Revealing modular organization in the yeast transcriptional network. Nat. Genet. 31, 370–377 (2002).
    Article CAS Google Scholar
  15. Townsend, J.P., Cavalieri, D. & Hartl, D.L. Population genetic variation in genome-wide gene expression. Mol. Biol. Evol. 20, 955–963 (2003).
    Article CAS Google Scholar
  16. Butler, J.E. & Kadonaga, J.T. The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev. 16, 2583–2592 (2002).
    Article CAS Google Scholar
  17. Basehoar, A.D., Zanton, S.J. & Pugh, B.F. Identification and distinct regulation of yeast TATA box-containing genes. Cell 116, 699–709 (2004).
    Article CAS Google Scholar
  18. Patikoglou, G.A. et al. TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Genes Dev. 13, 3217–3230 (1999).
    Article CAS Google Scholar
  19. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).
    Article CAS Google Scholar
  20. Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).
    Article CAS Google Scholar
  21. Brem, R.B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).
    Article CAS Google Scholar
  22. Fay, J.C., McCullough, H.L., Sniegowski, P.D. & Eisen, M.B. Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biol. 5, R26 (2004).
    Article Google Scholar
  23. Landry, C.R., Oh, J., Hartl, D.L. & Cavalieri, D. Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes. Gene 366, 343–351 (2006).
    Article CAS Google Scholar
  24. Chin, C.S., Chuang, J.H. & Li, H. Genome-wide regulatory complexity in yeast promoters: Separation of functionally conserved and neutral sequence. Genome Res. 15, 205–213 (2005).
    Article CAS Google Scholar
  25. Huisinga, K.L. & Pugh, B.F. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol. Cell 13, 573–585 (2004).
    Article CAS Google Scholar
  26. Zhang, H., Roberts, D.N. & Cairns, B.R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123, 219–231 (2005).
    Article CAS Google Scholar
  27. Raser, J.M. & O'Shea, E.K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004).
    Article CAS Google Scholar
  28. Blake, W.J., Kaern, M., Cantor, C.R. & Collins, J.J . Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).
    Article CAS Google Scholar
  29. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl. Acad. Sci. USA 95, 8420–8427 (1998).
    Article CAS Google Scholar
  30. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004).
    Article CAS Google Scholar

Download references