- Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).
Article CAS Google Scholar
- Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).
Article CAS Google Scholar
- Heard, E., Clerc, P. & Avner, P. X-chromosome inactivation in mammals. Annu. Rev. Genet. 31, 571–610 (1997).
Article CAS Google Scholar
- Egger, G., Liang, G., Aparicio, A. & Jones, P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463 (2004).
Article CAS Google Scholar
- Ioshikhes, I.P. & Zhang, M.Q. Large-scale human promoter mapping using CpG islands. Nat. Genet. 26, 61–63 (2000).
Article CAS Google Scholar
- Klose, R.J. & Bird, A.P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).
Article CAS Google Scholar
- Boyes, J. & Bird, A. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO J. 11, 327–333 (1992).
Article CAS Google Scholar
- Hsieh, C.L. Dependence of transcriptional repression on CpG methylation density. Mol. Cell. Biol. 14, 5487–5494 (1994).
Article CAS Google Scholar
- Brandeis, M., Ariel, M. & Cedar, H. Dynamics of DNA methylation during development. Bioessays 15, 709–713 (1993).
Article CAS Google Scholar
- Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).
Article CAS Google Scholar
- Futscher, B.W. et al. Role for DNA methylation in the control of cell type specific maspin expression. Nat. Genet. 31, 175–179 (2002).
Article CAS Google Scholar
- Song, F. et al. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc. Natl. Acad. Sci. USA 102, 3336–3341 (2005).
Article CAS Google Scholar
- Walsh, C.P. & Bestor, T.H. Cytosine methylation and mammalian development. Genes Dev. 13, 26–34 (1999).
Article CAS Google Scholar
- Warnecke, P.M. & Clark, S.J. DNA methylation profile of the mouse skeletal alpha-actin promoter during development and differentiation. Mol. Cell. Biol. 19, 164–172 (1999).
Article CAS Google Scholar
- Smiraglia, D.J. et al. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum. Mol. Genet. 10, 1413–1419 (2001).
Article CAS Google Scholar
- Coulondre, C., Miller, J.H., Farabaugh, P.J. & Gilbert, W. Molecular basis of base substitution hotspots in Escherichia coli. Nature 274, 775–780 (1978).
Article CAS Google Scholar
- Shen, J.C., Rideout, W.M., III. & Jones, P.A. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 22, 972–976 (1994).
Article CAS Google Scholar
- Hendrich, B., Hardeland, U., Ng, H.H., Jiricny, J. & Bird, A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401, 301–304 (1999).
Article CAS Google Scholar
- Neddermann, P. & Jiricny, J. The purification of a mismatch-specific thymine-DNA glycosylase from HeLa cells. J. Biol. Chem. 268, 21218–21224 (1993).
CAS PubMed Google Scholar
- Rollins, R.A. et al. Large-scale structure of genomic methylation patterns. Genome Res. 16, 157–163 (2006).
Article CAS Google Scholar
- Saxonov, S., Berg, P. & Brutlag, D.L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. USA 103, 1412–1417 (2006).
Article CAS Google Scholar
- Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).
Article CAS Google Scholar
- Takai, D. & Jones, P.A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl. Acad. Sci. USA 99, 3740–3745 (2002).
Article CAS Google Scholar
- Gardiner-Garden, M. & Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261–282 (1987).
Article CAS Google Scholar
- Kim, T.H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005).
Article CAS Google Scholar
- Peters, A.H. & Schubeler, D. Methylation of histones: playing memory with DNA. Curr. Opin. Cell Biol. 17, 230–238 (2005).
Article CAS Google Scholar
- Schubeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004).
Article Google Scholar
- Hwang, D.G. & Green, P. Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution. Proc. Natl. Acad. Sci. USA 101, 13994–14001 (2004).
Article CAS Google Scholar
- Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).
Article CAS Google Scholar
- Assou, S. et al. The human cumulus–oocyte complex gene-expression profile. Hum. Reprod. 21, 1705–1719 (2006).
Article CAS Google Scholar
- Koslowski, M. et al. Frequent nonrandom activation of germ-line genes in human cancer. Cancer Res. 64, 5988–5993 (2004).
Article CAS Google Scholar
- Choi, Y.C. & Chae, C.B. DNA hypomethylation and germ cell-specific expression of testis-specific H2B histone gene. J. Biol. Chem. 266, 20504–20511 (1991).
CAS PubMed Google Scholar
- Singal, R. et al. Testis-specific histone H1t gene is hypermethylated in nongerminal cells in the mouse. Biol. Reprod. 63, 1237–1244 (2000).
Article CAS Google Scholar
- Schubeler, D. et al. Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol. Cell. Biol. 20, 9103–9112 (2000).
Article CAS Google Scholar
- Eckhardt, F. et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38, 1378–1385 (2006).
Article CAS Google Scholar
- Bock, C. et al. CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet 2, e26 (2006).
Article Google Scholar
- Ayton, P.M., Chen, E.H. & Cleary, M.L. Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. Mol. Cell. Biol. 24, 10470–10478 (2004).
Article CAS Google Scholar
- Lee, J.H. & Skalnik, D.G. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J. Biol. Chem. 280, 41725–41731 (2005).
Article CAS Google Scholar
- Roh, T.Y., Cuddapah, S. & Zhao, K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev. 19, 542–552 (2005).
Article CAS Google Scholar
- Bird, A.P. Gene number, noise reduction and biological complexity. Trends Genet. 11, 94–100 (1995).
Article CAS Google Scholar
- Maatouk, D.M. et al. DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages. Development 133, 3411–3418 (2006).
Article CAS Google Scholar
- Pohlers, M. et al. A role for E2F6 in the restriction of male-germ-cell-specific gene expression. Curr. Biol. 15, 1051–1057 (2005).
Article CAS Google Scholar
- De Smet, C., Loriot, A. & Boon, T. Promoter-dependent mechanism leading to selective hypomethylation within the 5′ region of gene MAGE-A1 in tumor cells. Mol. Cell. Biol. 24, 4781–4790 (2004).
Article CAS Google Scholar
- Davuluri, R.V., Grosse, I. & Zhang, M.Q. Computational identification of promoters and first exons in the human genome. Nat. Genet. 29, 412–417 (2001).
Article CAS Google Scholar
- Carrel, L. & Willard, H.F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).
Article CAS Google Scholar
- Eisenberg, E. & Levanon, E.Y. Human housekeeping genes are compact. Trends Genet. 19, 362–365 (2003).
Article CAS Google Scholar
- Simpson, A.J., Caballero, O.L., Jungbluth, A., Chen, Y.T. & Old, L.J. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 5, 615–625 (2005).
Article CAS Google Scholar
- Li, Z. et al. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc. Natl. Acad. Sci. USA 100, 8164–8169 (2003).
Article CAS Google Scholar
- Riesewijk, A.M. et al. Monoallelic expression of human PEG1/MEST is paralleled by parent-specific methylation in fetuses. Genomics 42, 236–244 (1997).
Article CAS Google Scholar
- Muller, F. & Tora, L. The multicoloured world of promoter recognition complexes. EMBO J. 23, 2–8 (2004).
Article Google Scholar