Epigenetics in human disease and prospects for epigenetic therapy (original) (raw)
Holliday, R. & Pugh, J. E. DNA modification mechanisms and gene activity during development. Science187, 226–232 (1975). ADSCASPubMed Google Scholar
Riggs, A. D. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet.14, 9–25 (1975). CASPubMed Google Scholar
Takai, D. & Jones, P. A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA99, 3740–3745 (2002). ADSCASPubMedPubMed Central Google Scholar
Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Rev. Genet.3, 415–428 (2002). CASPubMed Google Scholar
Lachner, M. & Jenuwein, T. The many faces of histone lysine methylation. Curr. Opin. Cell Biol.14, 286–298 (2002). CASPubMed Google Scholar
Fischle, W., Wang, Y. & Allis, C. D. Binary switches and modification cassettes in histone biology and beyond. Nature425, 475–479 (2003). ADSCASPubMed Google Scholar
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature403, 41–45 (2000). ADSCASPubMed Google Scholar
Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature414, 277–283 (2001). ADSCASPubMed Google Scholar
Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature416, 556–560 (2002). ADSCASPubMed Google Scholar
Malagnac, F., Bartee, L. & Bender, J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J.21, 6842–6852 (2002). CASPubMedPubMed Central Google Scholar
Johnson, L., Cao, X. & Jacobsen, S. Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr. Biol.12, 1360–1367 (2002). CASPubMed Google Scholar
Soppe, W. J. et al. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J.21, 6549–6559 (2002). CASPubMedPubMed Central Google Scholar
Tariq, M. et al. Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proc. Natl Acad. Sci. USA100, 8823–8827 (2003). ADSCASPubMedPubMed Central Google Scholar
Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol.13, 1192–1200 (2003). CASPubMed Google Scholar
Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature393, 386–389 (1998). ArticleADSCASPubMed Google Scholar
Fuks, F. et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem.278, 4035–4040 (2003). CASPubMed Google Scholar
Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L. & Kouzarides, T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genet.24, 88–91 (2000). CASPubMed Google Scholar
Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science297, 2232–2237 (2002). ADSCASPubMed Google Scholar
Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297, 1833–1837 (2002). ADSCASPubMed Google Scholar
Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science299, 716–719 (2003). ADSCASPubMed Google Scholar
Rougeulle, C. & Heard, E. Antisense RNA in imprinting: spreading silence through Air. Trends Genet.18, 434–437 (2002). CASPubMed Google Scholar
Panning, B. & Jaenisch, R. RNA and the epigenetic regulation of X chromosome inactivation. Cell93, 305–308 (1998). CASPubMed Google Scholar
Tufarelli, C. et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nature Genet.203, 157–165 (2003). Google Scholar
Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99, 247–257 (1999). CASPubMed Google Scholar
Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet.23, 185–188 (1999). CASPubMed Google Scholar
Klose, R. & Bird, A. Molecular biology. MeCP2 repression goes nonglobal. Science302, 793–795 (2003). CASPubMed Google Scholar
Chen, W. G. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science302, 885–889 (2003). ADSCASPubMed Google Scholar
Martinowich, K. et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science302, 890–893 (2003). ADSCASPubMed Google Scholar
Kane, M. F. et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res.57, 808–811 (1997). CASPubMed Google Scholar
Gazzoli, I., Loda, M., Garber, J., Syngal, S. & Kolodner, R. D. A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-high tumor. Cancer Res.62, 3925–3928 (2002). CASPubMed Google Scholar
Suter, C. M., Martin, D. I. & Ward, R. L. Germline epimutation of MLH1 in individuals with multiple cancers. Nature Genet. advance online publication 4 April 2004 (doi:10.1038/ng1342).
Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age. Nature Genet.21, 163–167 (1999). CASPubMed Google Scholar
Hake, S. B., Xiao, A. & Allis, C. D. Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br. J. Cancer90, 761–769 (2004). CASPubMedPubMed Central Google Scholar
Grignani, F. et al. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature391, 815–818 (1998). ADSCASPubMed Google Scholar
Jones, L. K. & Saha, V. Chromatin modification, leukaemia and implications for therapy. Br. J. Haematol.118, 714–727 (2002). PubMed Google Scholar
Roberts, C. W. & Orkin, S. H. The SWI/SNF complex — chromatin and cancer. Nature Rev. Cancer4, 133–142 (2004). CAS Google Scholar
Wilson, V. L. & Jones, P. A. DNA methylation decreases in aging but not in immortal cells. Science220, 1055–1057 (1983). ADSCASPubMed Google Scholar
Richardson, B. C. Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J. Nutr.132, 2401S–2405S (2002). CASPubMed Google Scholar
Issa, J. P. CpG-island methylation in aging and cancer. Curr. Top. Microbiol. Immunol.249, 101–118 (2000). CASPubMed Google Scholar
Beaudet, A. L. & Jiang, Y. H. A rheostat model for a rapid and reversible form of imprinting-dependent evolution. Am. J. Hum. Genet.70, 1389–1397 (2002). CASPubMedPubMed Central Google Scholar
Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell81, 197–205 (1995). CASPubMed Google Scholar
Sorm, F., Piskala, A., Cihak, A. & Vesely, J. 5-Azacytidine, a new, highly effective cancerostatic. Experientia20, 202–203 (1964). CASPubMed Google Scholar
Constantinides, P. G., Jones, P. A. & Gevers, W. Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature267, 364–366 (1977). ADSCASPubMed Google Scholar
Jones, P. A. & Taylor, S. M. Cellular differentiation, cytidine analogs and DNA methylation. Cell20, 85–93 (1980). CASPubMed Google Scholar
Zhou, L. et al. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J. Mol. Biol.321, 591–599 (2002). CASPubMedPubMed Central Google Scholar
Michalowsky, L. A. & Jones, P. A. Differential nuclear protein binding to 5-azacytosine-containing DNA as a potential mechanism for 5-aza-2′-deoxycytidine resistance. Mol. Cell. Biol.7, 3076–3083 (1987). CASPubMedPubMed Central Google Scholar
Issa, J. P. et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood103, 1635–1640 (2004). CASPubMed Google Scholar
Saunthararajah, Y. et al. Effects of 5-aza-2′-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood102, 3865–3870 (2003). CASPubMed Google Scholar
Cheng, J. C. et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J. Natl Cancer Inst.95, 399–409 (2003). CASPubMed Google Scholar
Lin, X. et al. Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione _S_-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer Res.61, 8611–8616 (2001). CASPubMed Google Scholar
Fang, M. Z. et al. Tea polyphenol (–)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res.63, 7563–7570 (2003). CASPubMed Google Scholar
Pina, I. C. et al. Psammaplins from the sponge Pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase. J. Org. Chem.68, 3866–3873 (2003). CASPubMed Google Scholar
Yan, L. et al. Specific inhibition of DNMT1 by antisense oligonucleotides induces re-expression of estrogen receptor-α (ER) in ER-negative human breast cancer cell lines. Cancer Biol. Ther.2, 552–556 (2003). CASPubMed Google Scholar
Xiao, H., Hasegawa, T. & Isobe, K. Both Sp1 and Sp3 are responsible for p21waf1 promoter activity induced by histone deacetylase inhibitor in NIH3T3 cells. J. Cell. Biochem.73, 291–302 (1999). CASPubMed Google Scholar
Marks, P. A., Miller, T. & Richon, V. M. Histone deacetylases. Curr. Opin. Pharmacol.3, 344–351 (2003). CASPubMed Google Scholar
Jahangeer, S., Elliott, R. M. & Henneberry, R. C. β-Adrenergic receptor induction in HeLa cells: synergistic effect of 5-azacytidine and butyrate. Biochem. Biophys. Res. Commun.108, 1434–1440 (1982). CASPubMed Google Scholar
Ginder, G. D., Whitters, M. J. & Pohlman, J. K. Activation of a chicken embryonic globin gene in adult erythroid cells by 5-azacytidine and sodium butyrate. Proc. Natl Acad. Sci. USA81, 3954–3958 (1984). ADSCASPubMedPubMed Central Google Scholar
Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G. & Baylin, S. B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genet.21, 103–107 (1999). CASPubMed Google Scholar
Suzuki, H. et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature Genet.31, 141–149 (2002). CASPubMed Google Scholar
Yamashita, K. et al. Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell2, 485–495 (2002). CASPubMed Google Scholar
Belinsky, S. A. et al. Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res.63, 7089–7093 (2003). CASPubMed Google Scholar
Claus, R. & Lubbert, M. Epigenetic targets in hematopoietic malignancies. Oncogene22, 6489–6496 (2003). CASPubMed Google Scholar
Plumb, J. A., Strathdee, G., Sludden, J., Kaye, S. B. & Brown, R. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res.60, 6039–6044 (2000). CASPubMed Google Scholar
Karpf, A. R. & Jones, D. A. Reactivating the expression of methylation silenced genes in human cancer. Oncogene21, 5496–5503 (2002). CASPubMed Google Scholar
Weber, J. et al. Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2′-deoxycytidine. Cancer Res.54, 1766–1771 (1994). CASPubMed Google Scholar
Laird, P. W. The power and the promise of DNA methylation markers. Nature Rev. Cancer3, 253–266 (2003). CAS Google Scholar
Liang, G., Gonzales, F. A., Jones, P. A., Orntoft, T. F. & Thykjaer, T. Analysis of gene induction in human fibroblasts and bladder cancer cells exposed to the methylation inhibitor 5-aza-2′-deoxycytidine. Cancer Res.62, 961–966 (2002). CASPubMed Google Scholar
Mohandas, T., Sparkes, R. S. & Shapiro, L. J. Reactivation of an inactive X human chromosome: evidence for X inactivation by DNA methylation. Science211, 393–396 (1981). ADSCASPubMed Google Scholar
Wolf, S. F. & Migeon, B. R. Studies of X chromosome DNA methylation in normal human cells. Nature295, 667–671 (1982). ADSCASPubMed Google Scholar
Eversole-Cire, P. et al. Activation of an imprinted Igf 2 gene in mouse somatic cell cultures. Mol. Cell. Biol.13, 4928–4938 (1993). CASPubMedPubMed Central Google Scholar
Jackson-Grusby, L., Laird, P. W., Magge, S. N., Moeller, B. J. & Jaenisch, R. Mutagenicity of 5-aza-2′-deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc. Natl Acad. Sci. USA94, 4681–4685 (1997). ADSCASPubMedPubMed Central Google Scholar
Carr, B. I., Rahbar, S., Asmeron, Y., Riggs, A. & Winberg, C. D. Carcinogenicity and haemoglobin synthesis induction by cytidine analogues. Br. J. Cancer57, 395–402 (1988). CASPubMedPubMed Central Google Scholar
Sato, N. et al. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res.63, 4158–4166 (2003). CASPubMed Google Scholar
Yang, A. S., Estecio, M. R., Garcia-Manero, G., Kantarjian, H. M. & Issa, J. P. Comment on ‘Chromosomal instability and tumors promoted by DNA hypomethylation’ and ‘Induction of tumors in nice by genomic hypomethylation’. Science302, 1153 (2003). CASPubMed Google Scholar
Lubbert, M. et al. Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Br. J. Haematol.114, 349–357 (2001). CASPubMed Google Scholar
Karpf, A. R., Moore, B. C., Ririe, T. O. & Jones, D. A. Activation of the p53 DNA damage response pathway after inhibition of DNA methyltransferase by 5-aza-2′-deoxycytidine. Mol. Pharmacol.59, 751–757 (2001). CASPubMed Google Scholar
Jackson-Grusby, L. et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genet.27, 31–39 (2001). CASPubMed Google Scholar
Peterson, E. J., Bogler, O. & Taylor, S. M. p53-mediated repression of DNA methyltransferase 1 expression by specific DNA binding. Cancer Res.63, 6579–6582 (2003). CASPubMed Google Scholar
Juttermann, R., Li, E. & Jaenisch, R. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl Acad. Sci. USA91, 11797–11801 (1994). ADSCASPubMedPubMed Central Google Scholar
Esteller, M., Corn, P. G., Baylin, S. B. & Herman, J. G. A gene hypermethylation profile of human cancer. Cancer Res.61, 3225–3229 (2001). CASPubMed Google Scholar
Cui, H. et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science299, 1753–1755 (2003). ADSCASPubMed Google Scholar
Gibbons, R. J. & Higgs, D. R. Molecular-clinical spectrum of the ATR-X syndrome. Am. J. Med. Genet.97, 204–212 (2000). CASPubMed Google Scholar
Oostra, B. A. & Willemsen, R. The X chromosome and fragile X mental retardation. Cytogenet. Genome Res.99, 257–264 (2002). CASPubMed Google Scholar
Ehrlich, M. The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin. Immunol.109, 17–28 (2003). CASPubMed Google Scholar
Nicholls, R. D., Saitoh, S. & Horsthemke, B. Imprinting in Prader–Willi and Angelman syndromes. Trends Genet.14, 194–200 (1998). CASPubMed Google Scholar
Goldstone, A. P. Prader–Willi syndrome: advances in genetics, pathophysiology and treatment. Trends Endocrinol. Metab.15, 12–20 (2004). CASPubMed Google Scholar
Maher, E. R. & Reik, W. Beckwith–Wiedemann syndrome: imprinting in clusters revisited. J. Clin. Invest.105, 247–252 (2000). CASPubMedPubMed Central Google Scholar
Feinberg, A. P. & Tycko, B. The history of cancer epigenetics. Nature Rev. Cancer4, 143–153 (2004). CAS Google Scholar
Soejima, H. et al. Silencing of imprinted CDKN1C gene expression is associated with loss of CpG and histone H3 lysine 9 methylation at DMR-LIT1 in esophageal cancer. Oncogene published online 8 March 2004 (doi:10.1038/sj.onc.1207576).
Ausio, J., Levin, D. B., De Amorim, G. V., Bakker, S. & Macleod, P. M. Syndromes of disordered chromatin remodeling. Clin. Genet.64, 83–95 (2003). CASPubMed Google Scholar
Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet.13, 335–340 (1997). CASPubMed Google Scholar
Nguyen, C. T., Gonzales, F. A. & Jones, P. A. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res.29, 4598–4606 (2001). CASPubMedPubMed Central Google Scholar
Bachman, K. E. et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell3, 89–95 (2003). CASPubMed Google Scholar
El-Osta, A. & Wolffe, A. P. DNA methylation and histone deacetylation in the control of gene expression: basic biochemistry to human development and disease. Gene Expr.9, 63–75 (2000). CASPubMed Google Scholar
Nguyen, C. T. et al. Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res.62, 6456–6461 (2002). CASPubMed Google Scholar