Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome (original) (raw)
References
Noonan, J.A. Hypertelorism with Turner phenotype. A new syndrome with associated congenital heart disease. Am. J. Dis. Child.116, 373–380 (1968). ArticleCAS Google Scholar
Jamieson, C.R. et al. Mapping a gene for Noonan syndrome to the long arm of chromosome 12. Nature Genet.8, 357–360 (1994). ArticleCAS Google Scholar
Brady, A.F. et al. Further delineation of the critical region for Noonan syndrome on the long arm of chromosome 12. Eur. J. Hum. Genet.5, 336–337 (1997). CASPubMed Google Scholar
Legius, E., Schollen, E., Matthijs, G. & Fryns, J.P. Fine mapping of Noonan/cardio-facio cutaneous syndrome in a large family. Eur. J. Hum. Genet.6, 32–37 (1998). ArticleCAS Google Scholar
van Der Burgt, I. & Brunner, H. Genetic heterogeneity in Noonan syndrome: evidence for an autosomal recessive form. Am. J. Med. Genet.94, 46–51 (2000). ArticleCAS Google Scholar
Dechert, U. et al. Protein-tyrosine phosphatase SH-PTP2 (PTPN11) is localized to 12q24.1-24.3. Hum. Genet.96, 609–615 (1995). ArticleCAS Google Scholar
Feng, G.-S. Shp-2 tyrosine phosphatase: signaling one cell or many. Exp. Cell Res.253, 47–54 (1999). ArticleCAS Google Scholar
Chen, B. et al. Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nature Genet.24, 296–299 (2000). ArticleCAS Google Scholar
Lee, C.H. et al. Crystal structures of peptide complexes of the amino-terminal SH2 domain of the Syp tyrosine phosphatase. Structure2, 423–438 (1994). ArticleCAS Google Scholar
Eck, M.J., Pluskey, S., Trub, T., Harrison, S.C. & Shoelson, S.E. Spatial constraints on the recognition of phosphoproteins by the tandem SH2 domains of the phosphatase SH-PTP2. Nature379, 277–280 (1996). ArticleCAS Google Scholar
Hof, P., Pluskey, S., Dhe-Paganon, S., Eck, M.J. & Shoelson, S.E. Crystal structure of the tyrosine phosphatase SHP-2. Cell92, 441–450 (1998). ArticleCAS Google Scholar
Allen, M.P. & Tildesley . Computer Simulation of Liquids (Clarendon, Oxford, 1987). Google Scholar
Noguti, T. & Go, N. Efficient Monte Carlo method for simulation of fluctuating conformations of native proteins. Biopolymers24, 527–546 (1985). ArticleCAS Google Scholar
O'Reilly, A.M., Pluskey, S., Shoelson, S.E. & Neel, B.G. Activated mutants of SHP-2 preferentially induce elongation of Xenopus animal caps. Mol. Cell. Biol.20, 299–311 (2000). ArticleCAS Google Scholar
Arrandale, J.M. et al. Insulin signaling in mice expressing reduced levels of Syp. J. Biol. Chem.271, 21353–21358 (1996). ArticleCAS Google Scholar
Saxton, T.M. et al. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J.16, 2352–2364 (1997). ArticleCAS Google Scholar
Tang, T.L., Freeman, R.M. Jr, O'Reilly, A.M., Neel, B.G. & Sokol, S.Y. The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development. Cell80, 473–483 (1995). ArticleCAS Google Scholar
Perkins, L.A., Johnson, M.R., Melnick, M.B. & Perrimon, N. The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila. Dev. Biol.180, 63–81 (1996). ArticleCAS Google Scholar
Qu, C.K. et al. Biased suppression of hematopoiesis and multiple developmental defects in chimeric mice containing Shp-2 mutant cells. Mol. Cell. Biol.18, 6075–6082 (1998). ArticleCAS Google Scholar
Saxton, T.M. et al. The SH2 tyrosine phosphatase shp2 is required for mammalian limb development. Nature Genet.24, 420–423 (2000). ArticleCAS Google Scholar
Stein-Gerlach, M., Wallasch, C. & Ullrich, A. SHP-2, SH2-containing protein tyrosine phosphatase-2. Int. J. Biochem. Cell. Biol.30, 559–566 (1998). ArticleCAS Google Scholar
Tamir, I., Dal Porto, J.M. & Cambier, J.C. Cytoplasmic protein tyrosine phosphatase SHP-1 and SHP-2: regulators of B cell signal transduction. Curr. Opin. Immunol.12, 307–315 (2000). ArticleCAS Google Scholar
Shi, Z.Q., Lu, W. & Feng, G.S. The Shp-2 tyrosine phosphatase has opposite effects in mediating the activation of extracellular signal-regulated and c-Jun NH2-terminal mitogen-activated protein kinases. J. Biol. Chem.273, 4904–4908 (1998). ArticleCAS Google Scholar
You, M., Yu, D.H. & Feng, G.S. Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol. Cell. Biol.19, 2416–2424 (1999). ArticleCAS Google Scholar
Maroun, C.R., Naujokas, M.A., Holgado-Madruga, M., Wong, A.J. & Park, M. The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol. Cell. Biol.20, 8513–8525 (2000). ArticleCAS Google Scholar
You, M., Flick, L.M., Yu, D. & Feng, G.S. Modulation of the nuclear factor κB pathway by Shp-2 tyrosine phosphatase in mediating the induction of interleukin (IL)-6 by IL-1 or tumor necrosis factor. J. Exp. Med.193, 101–110 (2001). ArticleCAS Google Scholar
Brooks, B.R. et al. CHARMM — a program for macromolecular energy, minimization and dynamics calculations. J. Comput. Chem.4, 165–175 (1983). Article Google Scholar
MacKerell, A.D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B102, 3586–3616 (1998). ArticleCAS Google Scholar
Hassan, S.A., Mehler, E.L. & Weinstein, H. in Lecture Notes Series in Computational Science (ed. Schlick, T.) (Springer, New York, in press).
Shenkin, P.S. & McDonald, D.Q. Cluster analysis of molecular conformations. J. Comput. Chem.15, 899–916 (1994). ArticleCAS Google Scholar
Hassan, S.A., Guarnieri, F. & Mehler, E.L. A general treatment of solvent effects based on screened Coulomb potentials. J. Phys. Chem. B104, 6478–6489 (2000). ArticleCAS Google Scholar