Continental-scale temperature variability during the past two millennia (original) (raw)

Change history

In version of this Progress Article originally published, the authorship pseudonym was incorrectly stated as the PAGES 2k Network. The correct name is the PAGES 2k Consortium. This has been corrected in the PDF and HTML versions.

In the version of this Progress Article originally published, incorrect references were cited in the caption of Fig. 4a. The correct reference citation should read "5,43-45". This has been corrected in the PDF and HTML versions.

Since the original publication of this Progress Article, errors have been identified in the data set used for the Arctic temperature reconstruction. Corrections made to the Arctic data set are reflected in changes to this Progress Article as detailed in the associated Corrigendum (http://dx.doi.org/10.1038/ngeo2566)

References

  1. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).
    Article Google Scholar
  2. Snyder, C. W. The value of paleoclimate research in our changing climate. Clim. Change 100, 407–418 (2010).
    Article Google Scholar
  3. Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nature Clim. Change 2, 417–424 (2012).
    Article Google Scholar
  4. Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527 (2012).
    Article Google Scholar
  5. Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl Acad. Sci. USA 105, 13252–13257 (2008).
    Article Google Scholar
  6. Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256–1260 (2009).
    Article Google Scholar
  7. Frank, D., Esper, J., Zorita, E. & Wilson, R. A noodle, hockey stick, and spaghetti plate: a perspective on high-resolution paleoclimatology. WIREs Clim. Change 1, 507–516 (2010).
    Article Google Scholar
  8. Nicholson, S. E. et al. Temperature variability over Africa during the last 2000 years. The Holocene http://dx.doi.org/10.1177/0959683613483618 (2013).
  9. PAGES/Ocean2k Working Group. Synthesis of marine sediment-derived SST records for the past 2 millennia: First-order results from the PAGES/Ocean2k project. AGU Fall Meeting, abstr. PP11F-07 (American Geophysical Union, 2012).
  10. Christiansen, B., Schmith, T. & Thejll, P. A surrogate ensemble study of climate reconstruction methods: Stochasticity and robustness. J. Clim. 22, 951–976 (2009).
    Article Google Scholar
  11. Esper, J. & Frank, D. C. Divergence pitfalls in tree-ring research. Clim. Change 94, 261–266 (2009).
    Article Google Scholar
  12. Jones, P. D. & Mann, M. E. Climate over past millennia. Rev. Geophys. 42, RG2002 (2004).
    Article Google Scholar
  13. Crowley T. J. Causes of climate change over the past 1000 years. Science 289, 270–277 (2000).
    Article Google Scholar
  14. Bauer, E., Claussen, M., Brovkin, V. & Huenerbein, A. Assessing climate forcings of the Earth system for the past millennium. Geophys. Res. Lett. 30, 1276 (2003).
    Article Google Scholar
  15. Hegerl, G. C. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).
    Google Scholar
  16. Goosse, H., Crowley, T. J., Zorita, E., Ammann, C. E., Renssen, H. & Driesschaert, E. Modelling the climate of the last millennium: What causes the differences between simulations? Geophys. Res. Lett. 32, L06710 (2005).
    Article Google Scholar
  17. Steinhilber F. et al. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl Acad. Sci. 109, 5967–5971 (2012).
    Article Google Scholar
  18. Kaufman, D. S. et al. Recent warming reverses long-term Arctic cooling. Science 325, 1236–1239 (2009).
    Article Google Scholar
  19. Esper J. et al. Orbital forcing of tree-ring data. Nature Clim. Change 2, 862–866 (2012).
    Article Google Scholar
  20. Renssen, H. Goosse, H., Fichefet, T., Masson-Delmotte, V. & Koç, N. The Holocene climate evolution in the high-latitude Southern Hemisphere simulated by a coupled atmosphere-sea ice-ocean-vegetation model. The Holocene 15, 951–964 (2005).
    Article Google Scholar
  21. Fernández-Donado, L. et al. Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium. Clim. Past. 9, 393–421 (2013).
    Article Google Scholar
  22. Goosse, H. et al. The role of forcing and internal dynamics in explaining the 'Medieval Climate Anomaly'. Clim. Dyn. 39, 2847–2866 (2012).
    Article Google Scholar
  23. Lamb, H. H. The early medieval warm epoch and its sequel. Palaeogeogr. Palaeoclim. 1, 13–37 (1965).
    Article Google Scholar
  24. Bradley, R. S., Hughes, M. K. & Diaz, H. F. Climate in Medieval time. Science 302, 404–405 (2003).
    Article Google Scholar
  25. Matthews, J. A. & Briffa, K. R. The 'Little Ice Age': Re-evaluation of an evolving concept. Geogr. Ann. 87A, 17–36 (2005).
    Article Google Scholar
  26. Ljungqvist, F. C., Krusic, P. J., Brattström, G. & Sundqvist, H. S. Northern Hemisphere temperature patterns in the last 12 centuries. Clim. Past 8, 227–249 (2012).
    Article Google Scholar
  27. Diaz, H. F. et al. Spatial and temporal characteristics of climate in Medieval times revisited. Bull. Am. Meteorol. Soc. 92, 1487–1500 (2011).
    Article Google Scholar
  28. Stouffer R. J., Manabe, S. & Bryan, K. Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2 . Nature 342, 660–662 (1989).
    Article Google Scholar
  29. Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M. & Morice, C. P. Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. 117, D05127 (2012).
    Google Scholar
  30. Santer, B. D. et al. Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophy. Res. 105, 7337–7356 (2000).
    Article Google Scholar
  31. Schmidt, G. A. et al. Climate forcing reconstructions for use in PMIP simulation of the last millennium (v1.1). Geosci. Model Dev. 5, 185–191 (2012).
    Article Google Scholar
  32. Hanhijärvi, S., Tingley, M. P. & Korhola, A. Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic region over the last 2000 years. Clim. Dyn. http://dx.doi.org/10.1007/s00382-013-1701-4 (2013).
  33. Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).
    Article Google Scholar
  34. Dobrovolný, P. et al. Monthly, seasonal and annual temperature reconstructions for central Europe derived from documentary evidence and instrumental records since AD 1500. Clim. Change 101, 69–107 (2010).
    Article Google Scholar
  35. Cook, E. et al. Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C. E. Clim. Dyn. http://dx.doi.org/10.1007/s00382-012-1611-x (2013).
  36. Wahl, E. R. & Smerdon, J. E. Comparative performance of paleoclimate field and index reconstructions derived from climate proxies and noise-only predictors. Geophys. Res. Lett. 39, L06703 (2012).
    Google Scholar
  37. Trouet, V. et al. A 1500-year reconstruction of annual mean temperature for temperate North America on decadal-to-multidecadal time scales. Environ. Res. Lett. http://dx.doi.org/10.1088/1748-9326/8/2/024008 (2013).
  38. Neukom, R. et al. Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Clim. Dyn. 37, 35–51 (2011).
    Article Google Scholar
  39. Neukom, R. & Gergis, J. Southern Hemisphere high-resolution palaeoclimate records of the last 2000 years. The Holocene 22, 501–524 (2011).
    Article Google Scholar
  40. Schneider, D. et al. Antarctic temperatures over the past two centuries from ice cores. Geophys. Res. Lett. 33, L16707 (2006).
    Article Google Scholar
  41. Steig, E. et al. Recent climate and glacier changes in West Antarctica compared with the past 2,000 years. Nature Geosci. http://dx.doi.org/10.1038/ngeo1778 (2013).
  42. Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Clim. 10, 2147–2153 (1997).
    Article Google Scholar
  43. Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M. & Karlén, W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613–617 (2005).
    Article Google Scholar
  44. Ljungqvist, F. C. A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geogr. Ann. 92A, 339–351 (2010).
    Article Google Scholar
  45. Hegerl, G. C., Crowley, T. J., Hyde, W. T. & Frame, D. J. Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440, 1029–1032 (2006).
    Article Google Scholar
  46. Gao, C., Robock, A. & Ammann, C. Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res.-Atmos. 113, D23111 (2008).
    Article Google Scholar
  47. Crowley, T. & Unterman, M. Technical details concerning development of a 1200-year proxy index for global volcanism. Earth Syst. Sci. Data Discuss. 5, 1–28 (2012).
    Article Google Scholar
  48. Shapiro, A. et al. A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron. Astrophys. 529, A67 (2011).
    Article Google Scholar
  49. Vieira, L. E., Solanki, S. K., Krivov, A. V. & Usoskin, I. G. Evolution of the solar irradiance during the Holocene. Astron. Astrophys. 531, A6 (2011).
    Article Google Scholar
  50. Berger, A. L. Long-term variation of daily insolation and Quaternary climatic change. Quat. Res. 9, 139–167 (1978).
    Article Google Scholar

Download references

Acknowledgements

Support for PAGES activities is provided by the US and Swiss National Science Foundations, US National Oceanographic and Atmospheric Administration and by the International Geosphere-Biosphere Programme. All maps were kindly created by Alexander Hermann, Institute of Geography, University of Bern.

Author information

Author notes

  1. Mohammed Umer: Deceased

Authors and Affiliations

  1. Department of Botany, Federal Urdu University of Arts, Science and Technology, Karachi, 75300, Pakistan
    Moinuddin Ahmed
  2. Lamont Doherty Earth Observatory, Columbia University, Palisades, 10964, New York, USA
    Kevin J. Anchukaitis, Brendan M. Buckley, Edward R. Cook & Jason E. Smerdon
  3. Woods Hole Oceanographic Institution, Woods Hole, 2543, Massachusetts, USA
    Kevin J. Anchukaitis
  4. School of Earth Sciences, Addis Ababa University, Addis Ababa, Ethiopia
    Asfawossen Asrat & Mohammed Umer
  5. Indian Institute of Tropical Meteorology, Pune, 411008, India
    Hemant P. Borgaonkar
  6. Dipartimento di Matematica e Geoscienze, University of Trieste, 34128, Italy
    Martina Braida & Barbara Stenni
  7. Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
    Ulf Büntgen & Raphael Neukom
  8. Département Paléoenvironnements et Paléoclimats (PAL), Université Montpellier, Montpellier, 34095, France
    Brian M. Chase
  9. Department of Archaeology, History, Cultural Studies and Religion, University of Bergen, Bergen, 5020, Norway
    Brian M. Chase
  10. Laboratorio de Dendrocronología y Cambio Global, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
    Duncan A. Christie & Antonio Lara
  11. Center for Climate and Resilience Research, Universidad de Chile, Casilla 2777, Santiago, Chile
    Duncan A. Christie & Antonio Lara
  12. Australian Antarctic Division, Kingston, 7050, Tasmania, Australia
    Mark A. J. Curran, Andrew D. Moy & Tas van Ommen
  13. Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Sandy Bay, 7005, Tasmania, Australia
    Mark A. J. Curran, Andrew D. Moy & Tas van Ommen
  14. Cooperative Institute for Research in Environmental Sciences, National Oceanic and Atmospheric Administration, Boulder, 80305, Colorado, USA
    Henry F. Diaz
  15. Department of Geography, Johannes Gutenberg University, Mainz, 55099, Germany
    Jan Esper
  16. Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
    Ze-Xin Fan
  17. Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, GPO Box 3323, Lalitpur, Nepal
    Narayan P. Gaire
  18. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
    Quansheng Ge & Xuemei Shao
  19. School of Earth Sciences, University of Melbourne, Melbourne, 3010, Victoria, Australia
    Joëlle Gergis
  20. Departamento Astrofísica y CC de la Atmósfera, Universidad Complutense de Madrid, Madrid, 28040, Spain
    J Fidel González-Rouco
  21. Lemaitre Center for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
    Hugues Goosse
  22. School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Wits, 2050, South Africa
    Stefan W. Grab & David J. Nash
  23. Hydrologic Research Center, San Diego, 92130, California, USA
    Nicholas Graham & Rochelle Graham
  24. Oeschger Centre for Climate Change Research & Institute of Geography, University of Bern, Bern, 3012, Switzerland
    Martin Grosjean & Heinz Wanner
  25. Department of Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland
    Sami T. Hanhijärvi & Atte A. Korhola
  26. School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, 86011, Arizona, USA
    Darrell S. Kaufman & Nicholas P. McKay
  27. International Project Office, Past Global Changes (PAGES), Bern, 3012, Switzerland
    Thorsten Kiefer & Lucien von Gunten
  28. Department of Symbiotic System Science, Fukushima University, Fukushima, 960-1248, Japan
    Katsuhiko Kimura
  29. Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, 106 91, Sweden
    Paul J. Krusic
  30. Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN), Université Pierre et Marie Curie, Paris cedex, 575252, France
    Anne-Marie Lézine
  31. Department of History, Stockholm University, Stockholm, 106 91, Sweden
    Fredrik C. Ljungqvist
  32. National Institute of Water and Atmospheric Research Ltd., National Climate Centre Auckland, 1011, New Zealand
    Andrew M. Lorrey
  33. Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University, Giessen, 35390, Germany
    Jürg Luterbacher & Johannes P. Werner
  34. Laboratoire des Science du Climat et de l'Environnement, Gif-sur-Yvette, 91 191, France
    Valérie Masson-Delmotte
  35. Department of Geography, Swansea University, Swansea, SA2 8PP, UK
    Danny McCarroll & Maria R. Prieto
  36. Desert Research Institute, Nevada System of Higher Education, Reno, 89512, Nevada, USA
    Joseph R. McConnell & Michael Sigl
  37. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT-CONICET-Mendoza, Mendoza, 5500, Argentina
    Mariano S. Morales, Ignacio A. Mundo & Ricardo Villalba
  38. British Antarctic Survey, Cambridge, CB3 0ET, UK
    Robert Mulvaney
  39. Department of Earth and Environmental Sciences, Nagoya University, Nagoya, 464.8601, Japan
    Takeshi Nakatsuka & Masaki Sano
  40. School of Environment and Technology, University of Brighton, Brighton, BN2 4GJ, UK
    David J. Nash
  41. Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, 32308, Florida, USA
    Sharon E. Nicholson
  42. Department of Glaciology, Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association, Bremerhaven, 27570, Germany
    Hans Oerter
  43. College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK
    Jonathan G. Palmer
  44. Climate Change Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia
    Jonathan G. Palmer, Steven J. Phipps & Chris S.M. Turney
  45. ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, 2052, NSW, Australia
    Steven J. Phipps
  46. Centro de Estudios Cientificos, Valdivia, Chile
    Andres Rivera
  47. Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, 50019, Italy
    Mirko Severi
  48. Jackson School of Geosciences, University of Texas at Austin, Austin, 78712, Texas, USA
    Timothy M. Shanahan
  49. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
    Feng Shi
  50. Institute of Geography, Russian Academy of Sciences, Moscow, 119017, Russia
    Olga N. Solomina
  51. Department of Earth and Space Sciences, University of Washington, Seattle, 98195, Washington, USA
    Eric J. Steig
  52. National Centre for Antarctic and Ocean Research, Goa, 403 804, India
    Meloth Thamban
  53. Laboratory of Tree-Ring Research, University of Arizona, Tucson, 85721, Arizona, USA
    Valerie Trouet
  54. Department of Biology, Ghent University, Ghent, 9000, Belgium
    Dirk Verschuren
  55. Department of Geography, University of Ottawa, Ottawa, K1N 6N5, Canada
    Andre E. Viau
  56. Niels Bohr Institute, University of Copenhagen, Copenhagen, 2100, Denmark
    Bo M. Vinther
  57. Institute for Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, 21502, Germany
    Sebastian Wagner & Eduardo Zorita
  58. National Climatic Data Center, National Oceanic and Atmospheric Administration, Boulder, 80305, Colorado, USA
    Eugene R. Wahl
  59. Institute of Arctic and Alpine Research, University of Colorado, Boulder, 80309, Colorado, USA
    James W.C. White
  60. Department of Forest Science, Shinshu University, Nagano, 399-4598, Japan
    Koh Yasue

Consortia

PAGES 2k Consortium

Contributions

Writing teamg: D.S.K. led the synthesis; N.P.McK., E.Z. & S.T.H. performed the synthesis analyses; D.S.K., R.N., L.v.G., T.K., H.G., H.W., C.S.M.T., F.C.L., V.M-D., E.R.W., & T.v.O. prepared the manuscript. Africa: D.J.N., A.A., B.M.C., S.W.G., S.E.N., T.M.S, D.V., A-M.L., M.U. compiled and evaluated the proxy data. Antarctica: T.v.O, M.B., A.D.M., R.M., H.O., M.Se., B.S., E.J.S., M.T., J.W.C.W., M.A.J.C., J.R.McC., M.Si. & B.M.V. provided proxy data, contributed to their dating and interpretation; M.A.J.C., J.R.McC., M.Si. & B.M.V. correlated volcanic markers; T.v.O & R.N. produced the reconstruction; M.A.J.C. managed the data. Arctic: A.A.K., D.S.K. & S.T.H. coordinated the study. S.T.H, D.S.K. & F.C.L. collected and reviewed the proxy data; S.T.H. calculated the reconstruction and managed data. Asia: M.A., K.J.A., H.P.B., B.M.B.,Q.G., E.R.C., Z.F., N.P.G., K.K., P.J.K., T.N., J.G.P., M.Sa., X.S., O.N.S. & K.Y. contributed, collected and analysed the proxy data; K.J.A., B.M.B., E.R.C. & P.J.K. performed the reconstruction; T.N., M.Sa. & F.S. provided technical support and managed the data. Australasia: J.G., A.M.L., S.J.P. & R.N. coordinated the study. R.N. & J.G. collated, managed and analysed the proxy data; R.N. & J.G. developed the reconstruction with input from S.J.P. Europe: U.B., J.E., S.W., E.Z., D.McC., F.J.G.-R., F.C.L., J.E.S., J.P.W. & J.L. collected, reviewed and analysed the proxy records, and provided input in the analysis and interpretation of the European reconstruction; S.W. managed the data; J.P.W. & J.E.S. produced the reconstruction. North America: H.F.D., E.R.W., V.T., R.G., N.G. & A.E.V. designed the study, analysed the data, and produced the reconstructions; E.R.W. & A.E.V. collected and archived the data. South America: R.V. & M.G. coordinated the study; R.V., D.A.C, A.L., I.A.M., M.S.M., L.v.G., M.R.P. & A.R. provided proxy data; R.N. calculated the reconstruction; R.N. & I.A.M. managed the data. All authors reviewed the manuscript.

Corresponding author

Correspondence toDarrell S. Kaufman.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Supplementary information

Rights and permissions

About this article

Cite this article

PAGES 2k Consortium. Continental-scale temperature variability during the past two millennia.Nature Geosci 6, 339–346 (2013). https://doi.org/10.1038/ngeo1797

Download citation