The global volume and distribution of modern groundwater (original) (raw)
References
Sturchio, N. C. et al. One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys. Res. Lett.31, L05503 (2004). Article Google Scholar
McCallum, J. L., Cook, P. G. & Simmons, C. T. Limitations of the use of environmental tracers to infer groundwater age. Groundwater53, 56–70 (2014). Article Google Scholar
Weissmann, G. S., Zhang, Y., LaBolle, E. M. & Fogg, G. E. Dispersion of groundwater age in an alluvial aquifer system. Wat. Resour. Res.38, 1198 (2002). Article Google Scholar
Bethke, C. M. & Johnson, T. M. Groundwater age and groundwater age dating. Annu. Rev. Earth Planet. Sci.36, 121–152 (2008). Article Google Scholar
Kazemi, G., Lehr, J. & Perrochet, P. Groundwater Age (Wiley-Interscience, 2006). Book Google Scholar
Alley, W. M., Healy, R. W., LaBaugh, J. W. & Reilly, T. E. Flow and storage in groundwater systems. Science296, 1985–1990 (2002). Article Google Scholar
Foster, S. S. D. & Chilton, P. J. Groundwater: The processes and global significance of aquifer degradation. Phil. Trans. R. Soc. Lond. B358, 1957–1972 (2003). Article Google Scholar
Taylor, R. G. et al. Ground water and climate change. Nature Clim. Change3, 322–329 (2013). Article Google Scholar
Moore, W. S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature380, 612–614 (1996). Article Google Scholar
Maher, K. & Chamberlain, C. P. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science343, 1502–1504 (2014). Article Google Scholar
Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos89, 93–94 (2008). Article Google Scholar
Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere6, 221–233 (2012). Article Google Scholar
Garmonov, I. V., Konoplyantsev, A. A. & Lushnikova, N. P. in The World Water Balance and Water Resources of the Earth (ed. Korzun, K. I.) 48–50 (Hydrometeoizdat, 1974). Google Scholar
Chahine, M. T. The hydrological cycle and its influence on climate. Nature359, 373–380 (1992). Article Google Scholar
Schneider, U. et al. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol.115, 15–40 (2014). Article Google Scholar
Nace, R. L. in Water, Earth, and Man: A Synthesis of Hydrology, Geomorphology, and Socio-Economic Geography (ed. Chorley, R. J.) 31–42 (Methuen and Co., 1969). Google Scholar
Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science339, 940–943 (2013). Article Google Scholar
USSR Committee for the International Hydrologic Decade World Water Balance and Water Resources of the Earth (UNESCO, 1978). Google Scholar
Gleeson, T., Moosdorf, N., Hartmann, J. & vanBeek, L. P. H. A glimpse beneath Earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. Res. Lett.41, 3891–3898 (2014). Article Google Scholar
Cardenas, M. B. Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: Residence time distribution analysis of Tóth flow. Geophys. Res. Lett.34, L05403 (2007). Article Google Scholar
Lerner, D. N. in Geochemical Processes, Weathering and Groundwater Recharge in Catchments (eds Saether, O. M. & de Caritat, P.) 109–150 (Balkema, 1997). Google Scholar
Scanlon, B., Healy, R. & Cook, P. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J.10, 18–39 (2002). Article Google Scholar
Scanlon, B. R. et al. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process.20, 3335–3370 (2006). Article Google Scholar
Döll, P. & Fiedler, K. Global-scale modeling of groundwater recharge. Hydrol. Earth Syst. Sci.12, 863–885 (2008). Article Google Scholar
Giordano, M. Global groundwater? Issues and solutions. Annu Rev. Environ. Resour.34, 153–178 (2009). Article Google Scholar
Morris, B. L. et al. Groundwater and its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management (UNEP Early Warning and Assessment Report Series RS 03-3, 2003). Google Scholar
Fleckenstein, J. H., Krause, S., Hannah, D. M. & Boano, F. Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics. Adv. Water Resour.33, 1291–1295 (2010). Article Google Scholar
Nicot, J.-P., Scanlon, B. R., Reedy, R. C. & Costley, R. A. Source and fate of hydraulic fracturing water in the Barnett Shale: A historical perspective. Environ. Sci. Technol.48, 2464–2471 (2014). Article Google Scholar
Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: A global assessment. Wat. Resour. Res.48, W00L06 (2012). Article Google Scholar
Athy, L. F. Density, porosity, and compaction of sedimentary rocks. AAPG Bull.14, 1–24 (1930). Google Scholar
Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science313, 1068–1072 (2006). Article Google Scholar
Ehrenberg, S. N. & Nadeau, P. H. Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships. Am. Assoc. Petrol. Geol. Bull.89, 435–445 (2005). Google Scholar
Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst.13, Q12004 (2012). Article Google Scholar
Laske, G. & Masters, G. A global digital map of sediment thickness. Eos78, F483 (1997). Google Scholar
Zhang, Y., Ye, S. & Wu, J. A modified global model for predicting the tritium distribution in precipitation, 1960–2005. Hydrol. Process.25, 2379–2392 (2011). Article Google Scholar
Begemann, F. & Libby, W. F. Continental water balance, ground water inventory and storage times, surface ocean mixing rates and world-wide water circulation patterns from cosmic-ray and bomb tritium. Geochim. Cosmochim. Acta12, 277–296 (1957). Article Google Scholar
Clark, I. & Fritz, P. Environmental Isotopes in Hydrogeology (Lewis, 1997). Google Scholar
Kotzer, T. G., Kudo, A., Zheng, J. & Workman, W. Natural and anthropogenic levels of tritium in a Canadian Arctic ice core, Agassiz Ice Cap, Ellesmere Island, and comparison with other radionuclides. J. Glaciol.46, 35–40 (2000). Article Google Scholar
Tóth, J. A theoretical analysis of groundwater flow in small drainage basins. J. Geophys. Res.68, 4795–4812 (1963). Article Google Scholar
Jiang, X.-W., Wan, L., Cardenas, M. B., Ge, S. & Wang, X.-S. Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying hydraulic conductivity and porosity. Geophys. Res. Lett.37, L05403 (2010). Google Scholar
Jiang, X.-W., Wan, L., Wang, X.-S., Ge, S. & Liu, J. Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow. Geophys. Res. Lett.36, L24402 (2009). Article Google Scholar
Cardenas, M. B. & Jiang, X. W. Groundwater flow, transport, and residence times through topography-driven basins with exponentially decreasing permeability and porosity. Wat. Resour. Res.46, W11538 (2010). Google Scholar
Bernabé, Y., Mok, U. & Evans, B. Permeability-porosity relationships in rocks subjected to various evolution processes. Pure Appl. Geophys.160, 937–960 (2003). Article Google Scholar
Goode, D. J. Direct simulation of groundwater age. Wat. Resour. Res.32, 289–296 (1996). Article Google Scholar