The global volume and distribution of modern groundwater (original) (raw)

References

  1. Sturchio, N. C. et al. One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys. Res. Lett. 31, L05503 (2004).
    Article Google Scholar
  2. McCallum, J. L., Cook, P. G. & Simmons, C. T. Limitations of the use of environmental tracers to infer groundwater age. Groundwater 53, 56–70 (2014).
    Article Google Scholar
  3. Weissmann, G. S., Zhang, Y., LaBolle, E. M. & Fogg, G. E. Dispersion of groundwater age in an alluvial aquifer system. Wat. Resour. Res. 38, 1198 (2002).
    Article Google Scholar
  4. Bethke, C. M. & Johnson, T. M. Groundwater age and groundwater age dating. Annu. Rev. Earth Planet. Sci. 36, 121–152 (2008).
    Article Google Scholar
  5. Kazemi, G., Lehr, J. & Perrochet, P. Groundwater Age (Wiley-Interscience, 2006).
    Book Google Scholar
  6. Alley, W. M., Healy, R. W., LaBaugh, J. W. & Reilly, T. E. Flow and storage in groundwater systems. Science 296, 1985–1990 (2002).
    Article Google Scholar
  7. Foster, S. S. D. & Chilton, P. J. Groundwater: The processes and global significance of aquifer degradation. Phil. Trans. R. Soc. Lond. B 358, 1957–1972 (2003).
    Article Google Scholar
  8. Taylor, R. G. et al. Ground water and climate change. Nature Clim. Change 3, 322–329 (2013).
    Article Google Scholar
  9. Moore, W. S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380, 612–614 (1996).
    Article Google Scholar
  10. Maher, K. & Chamberlain, C. P. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 343, 1502–1504 (2014).
    Article Google Scholar
  11. Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos 89, 93–94 (2008).
    Article Google Scholar
  12. Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233 (2012).
    Article Google Scholar
  13. Garmonov, I. V., Konoplyantsev, A. A. & Lushnikova, N. P. in The World Water Balance and Water Resources of the Earth (ed. Korzun, K. I.) 48–50 (Hydrometeoizdat, 1974).
    Google Scholar
  14. Chahine, M. T. The hydrological cycle and its influence on climate. Nature 359, 373–380 (1992).
    Article Google Scholar
  15. Schneider, U. et al. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 115, 15–40 (2014).
    Article Google Scholar
  16. L’ Vovich, M. I. in World Water Resources and their Future (ed. Nace, R. L.) 13–23 (American Geophysical Union, 1979); http://onlinelibrary.wiley.com/book/10.1029/SP013
    Book Google Scholar
  17. Nace, R. L. in Water, Earth, and Man: A Synthesis of Hydrology, Geomorphology, and Socio-Economic Geography (ed. Chorley, R. J.) 31–42 (Methuen and Co., 1969).
    Google Scholar
  18. Holland, H. D. & Turekian, K. K. (eds) in Treatise on Geochemistry 2nd edn (Pergamon, 2003); http://www.sciencedirect.com/science/referenceworks/9780080983004
  19. Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).
    Article Google Scholar
  20. USSR Committee for the International Hydrologic Decade World Water Balance and Water Resources of the Earth (UNESCO, 1978).
    Google Scholar
  21. Gleeson, T., Moosdorf, N., Hartmann, J. & vanBeek, L. P. H. A glimpse beneath Earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. Res. Lett. 41, 3891–3898 (2014).
    Article Google Scholar
  22. Cardenas, M. B. Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: Residence time distribution analysis of Tóth flow. Geophys. Res. Lett. 34, L05403 (2007).
    Article Google Scholar
  23. Lerner, D. N. in Geochemical Processes, Weathering and Groundwater Recharge in Catchments (eds Saether, O. M. & de Caritat, P.) 109–150 (Balkema, 1997).
    Google Scholar
  24. Scanlon, B., Healy, R. & Cook, P. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 10, 18–39 (2002).
    Article Google Scholar
  25. Scanlon, B. R. et al. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 20, 3335–3370 (2006).
    Article Google Scholar
  26. Döll, P. & Fiedler, K. Global-scale modeling of groundwater recharge. Hydrol. Earth Syst. Sci. 12, 863–885 (2008).
    Article Google Scholar
  27. Giordano, M. Global groundwater? Issues and solutions. Annu Rev. Environ. Resour. 34, 153–178 (2009).
    Article Google Scholar
  28. Morris, B. L. et al. Groundwater and its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management (UNEP Early Warning and Assessment Report Series RS 03-3, 2003).
    Google Scholar
  29. Fleckenstein, J. H., Krause, S., Hannah, D. M. & Boano, F. Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics. Adv. Water Resour. 33, 1291–1295 (2010).
    Article Google Scholar
  30. Nicot, J.-P., Scanlon, B. R., Reedy, R. C. & Costley, R. A. Source and fate of hydraulic fracturing water in the Barnett Shale: A historical perspective. Environ. Sci. Technol. 48, 2464–2471 (2014).
    Article Google Scholar
  31. Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: A global assessment. Wat. Resour. Res. 48, W00L06 (2012).
    Article Google Scholar
  32. Athy, L. F. Density, porosity, and compaction of sedimentary rocks. AAPG Bull. 14, 1–24 (1930).
    Google Scholar
  33. Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).
    Article Google Scholar
  34. Ehrenberg, S. N. & Nadeau, P. H. Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships. Am. Assoc. Petrol. Geol. Bull. 89, 435–445 (2005).
    Google Scholar
  35. Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst. 13, Q12004 (2012).
    Article Google Scholar
  36. Laske, G. & Masters, G. A global digital map of sediment thickness. Eos 78, F483 (1997).
    Google Scholar
  37. Zhang, Y., Ye, S. & Wu, J. A modified global model for predicting the tritium distribution in precipitation, 1960–2005. Hydrol. Process. 25, 2379–2392 (2011).
    Article Google Scholar
  38. Begemann, F. & Libby, W. F. Continental water balance, ground water inventory and storage times, surface ocean mixing rates and world-wide water circulation patterns from cosmic-ray and bomb tritium. Geochim. Cosmochim. Acta 12, 277–296 (1957).
    Article Google Scholar
  39. Clark, I. & Fritz, P. Environmental Isotopes in Hydrogeology (Lewis, 1997).
    Google Scholar
  40. Kotzer, T. G., Kudo, A., Zheng, J. & Workman, W. Natural and anthropogenic levels of tritium in a Canadian Arctic ice core, Agassiz Ice Cap, Ellesmere Island, and comparison with other radionuclides. J. Glaciol. 46, 35–40 (2000).
    Article Google Scholar
  41. Tóth, J. A theoretical analysis of groundwater flow in small drainage basins. J. Geophys. Res. 68, 4795–4812 (1963).
    Article Google Scholar
  42. Jiang, X.-W., Wan, L., Cardenas, M. B., Ge, S. & Wang, X.-S. Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying hydraulic conductivity and porosity. Geophys. Res. Lett. 37, L05403 (2010).
    Google Scholar
  43. Jiang, X.-W., Wan, L., Wang, X.-S., Ge, S. & Liu, J. Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow. Geophys. Res. Lett. 36, L24402 (2009).
    Article Google Scholar
  44. Cardenas, M. B. & Jiang, X. W. Groundwater flow, transport, and residence times through topography-driven basins with exponentially decreasing permeability and porosity. Wat. Resour. Res. 46, W11538 (2010).
    Google Scholar
  45. Bernabé, Y., Mok, U. & Evans, B. Permeability-porosity relationships in rocks subjected to various evolution processes. Pure Appl. Geophys. 160, 937–960 (2003).
    Article Google Scholar
  46. Goode, D. J. Direct simulation of groundwater age. Wat. Resour. Res. 32, 289–296 (1996).
    Article Google Scholar

Download references