Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature441, 235–238 (2006). ArticleCASPubMed Google Scholar
Elyaman, W. et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc. Natl. Acad. Sci. USA106, 12885–12890 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature441, 231–234 (2006). ArticleCASPubMed Google Scholar
Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity24, 179–189 (2006). ArticleCASPubMed Google Scholar
McGeachy, M.J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol.10, 314–324 (2009). ArticleCASPubMedPubMed Central Google Scholar
McGeachy, M.J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat. Immunol.8, 1390–1397 (2007). ArticleCASPubMed Google Scholar
Haak, S. et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J. Clin. Invest.119, 61–69 (2009). CASPubMed Google Scholar
Uyttenhove, C., Sommereyns, C., Theate, I., Michiels, T. & Van Snick, J. Anti-IL-17A autovaccination prevents clinical and histological manifestations of experimental autoimmune encephalomyelitis. Ann. NY Acad. Sci.1110, 330–336 (2007). ArticleCASPubMed Google Scholar
Coquet, J.M., Chakravarti, S., Smyth, M.J. & Godfrey, D.I. Cutting edge: IL-21 is not essential for Th17 differentiation or experimental autoimmune encephalomyelitis. J. Immunol.180, 7097–7101 (2008). ArticleCASPubMed Google Scholar
Kreymborg, K. et al. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol.179, 8098–8104 (2007). ArticleCASPubMed Google Scholar
Sonderegger, I., Kisielow, J., Meier, R., King, C. & Kopf, M. IL-21 and IL-21R are not required for development of Th17 cells and autoimmunity in vivo. Eur. J. Immunol.38, 1833–1838 (2008). ArticleCASPubMed Google Scholar
Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature421, 744–748 (2003). ArticleCASPubMed Google Scholar
Eugster, H.P., Frei, K., Kopf, M., Lassmann, H. & Fontana, A. IL-6-deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. Eur. J. Immunol.28, 2178–2187 (1998). ArticleCASPubMed Google Scholar
Matsuki, T., Nakae, S., Sudo, K., Horai, R. & Iwakura, Y. Abnormal T cell activation caused by the imbalance of the IL-1/IL-1R antagonist system is responsible for the development of experimental autoimmune encephalomyelitis. Int. Immunol.18, 399–407 (2006). ArticleCASPubMed Google Scholar
McQualter, J.L. et al. Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J. Exp. Med.194, 873–882 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ponomarev, E.D. et al. GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J. Immunol.178, 39–48 (2007). ArticleCASPubMed Google Scholar
Sonderegger, I. et al. GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J. Exp. Med.205, 2281–2294 (2008). ArticleCASPubMedPubMed Central Google Scholar
Infante-Duarte, C., Horton, H.F., Byrne, M.C. & Kamradt, T. Microbial lipopeptides induce the production of IL-17 in Th cells. J. Immunol.165, 6107–6115 (2000). ArticleCASPubMed Google Scholar
Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A. & Coffman, R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol.136, 2348–2357 (1986). CASPubMed Google Scholar
Miyamoto, T. et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev. Cell3, 137–147 (2002). ArticleCASPubMed Google Scholar
Park, L.S., Friend, D., Gillis, S. & Urdal, D.L. Characterization of the cell surface receptor for granulocyte-macrophage colony-stimulating factor. J. Biol. Chem.261, 4177–4183 (1986). CASPubMed Google Scholar
Fleetwood, A.J., Lawrence, T., Hamilton, J.A. & Cook, A.D. Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J. Immunol.178, 5245–5252 (2007). ArticleCASPubMed Google Scholar
Awasthi, A. et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol.182, 5904–5908 (2009). ArticleCASPubMed Google Scholar
Leppkes, M. et al. RORγ-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology136, 257–267 (2009). ArticleCASPubMed Google Scholar
Yang, X.O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity28, 29–39 (2008). ArticleCASPubMed Google Scholar
Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell126, 1121–1133 (2006). ArticleCASPubMed Google Scholar
Gocke, A.R. et al. T-bet regulates the fate of Th1 and Th17 lymphocytes in autoimmunity. J. Immunol.178, 1341–1348 (2007). ArticleCASPubMed Google Scholar
Chen, Y. et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J. Clin. Invest.116, 1317–1326 (2006). ArticleCASPubMedPubMed Central Google Scholar
Reboldi, A. et al. C–C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol.10, 514–523 (2009). ArticleCASPubMed Google Scholar
Verreck, F.A. et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl. Acad. Sci. USA101, 4560–4565 (2004). ArticleCASPubMedPubMed Central Google Scholar
Rachitskaya, A.V. et al. Cutting edge: NKT cells constitutively express IL-23 receptor and RORγt and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J. Immunol.180, 5167–5171 (2008). ArticleCASPubMed Google Scholar
Lu-Kuo, J.M., Austen, K.F. & Katz, H.R. Post-transcriptional stabilization by interleukin-1β of interleukin-6 mRNA induced by c-kit ligand and interleukin-10 in mouse bone marrow-derived mast cells. J. Biol. Chem.271, 22169–22174 (1996). ArticleCASPubMed Google Scholar
Ciric, B., El-behi, M., Cabrera, R., Zhang, G.X. & Rostami, A. IL-23 drives pathogenic IL-17-producing CD8+ T cells. J. Immunol.182, 5296–5305 (2009). ArticleCASPubMed Google Scholar
Yamazaki, T. et al. CCR6 regulates the migration of inflammatory and regulatory T cells. J. Immunol.181, 8391–8401 (2008). ArticleCASPubMed Google Scholar
Sheibanie, A.F., Tadmori, I., Jing, H., Vassiliou, E. & Ganea, D. Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J.18, 1318–1320 (2004). ArticleCASPubMed Google Scholar
Li, J. et al. Differential expression and regulation of IL-23 and IL-12 subunits and receptors in adult mouse microglia. J. Neurol. Sci.215, 95–103 (2003). ArticleCASPubMed Google Scholar