Autoimmune T cell responses in the central nervous system (original) (raw)
McFarland, H. F. & Martin, R. Multiple sclerosis: a complicated picture of autoimmunity. Nature Immunol.8, 913–919 (2007). CAS Google Scholar
Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol.47, 707–717 (2000). CASPubMed Google Scholar
Raine, C. in Multiple Sclerosis: Clinical and Pathogenetic Basis (eds Raine, C. S., McFarland, H. F. & Tourtellotte, W. W.) 243–286 (Chapman and Hall, London, 1997). Google Scholar
Ransohoff, R. M., Kivisakk, P. & Kidd, G. Three or more routes for leukocyte migration into the central nervous system. Nature Rev. Immunol.3, 569–581 (2003). CAS Google Scholar
Huseby, E. S., Sather, B., Huseby, P. G. & Goverman, J. Age-dependent T cell tolerance and autoimmunity to myelin basic protein. Immunity14, 471–481 (2001). CASPubMed Google Scholar
Perchellet, A., Stromnes, I., Pang, J. M. & Goverman, J. CD8+ T cells maintain tolerance to myelin basic protein by 'epitope theft'. Nature Immunol.5, 606–614 (2004). This paper identifies a new form of tolerance that allows CD8+ T cells specific for MBP to circulate in the periphery without responding to endogenous MBP. CAS Google Scholar
Pender, M. P., Tabi, Z., Nguyen, K. B. & McCombe, P. A. The proximal peripheral nervous system is a major site of demyelination in experimental autoimmune encephalomyelitis induced in the Lewis rat by a myelin basic protein-specific T cell clone. Acta Neuropathol.89, 527–531 (1995). CASPubMed Google Scholar
Furtado, G. C. et al. Swift entry of myelin-specific T lymphocytes into the central nervous system in spontaneous autoimmune encephalomyelitis. J. Immunol.181, 4648–4655 (2008). CASPubMed Google Scholar
Zhang, H., Podojil, J. R., Luo, X. & Miller, S. D. Intrinsic and induced regulation of the age-associated onset of spontaneous experimental autoimmune encephalomyelitis. J. Immunol.181, 4638–4647 (2008). CASPubMed Google Scholar
Piccio, L. et al. Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric Gi-linked receptors. J. Immunol.168, 1940–1949 (2002). CASPubMed Google Scholar
Reboldi, A. et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nature Immunol.10, 514–523 (2009). CAS Google Scholar
Lassmann, H. & Wisniewski, H. M. Chronic relapsing EAE. Time course of neurological symptoms and pathology. Acta Neuropathol.43, 35–42 (1978). CASPubMed Google Scholar
Kivisakk, P. et al. Localizing central nervous system immune surveillance: Meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol. 21 May 2008 (doi:10.1002/ana.21379). PubMedPubMed Central Google Scholar
Brown, D. A. & Sawchenko, P. E. Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J. Comp. Neurol.502, 236–260 (2007). This paper describes the temporal and spatial pattern of inflammatory and degenerative events that occur during the induction of EAE. PubMed Google Scholar
Gimenez, M. A., Sim, J., Archambault, A. S., Klein, R. S. & Russell, J. H. A tumor necrosis factor receptor 1-dependent conversation between central nervous system-specific T cells and the central nervous system is required for inflammatory infiltration of the spinal cord. Am. J. Pathol.168, 1200–1209 (2006). CASPubMedPubMed Central Google Scholar
Kawakami, N. et al. The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J. Exp. Med.199, 185–197 (2004). CASPubMedPubMed Central Google Scholar
Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med.192, 1027–1034 (2000). CASPubMedPubMed Central Google Scholar
Kim, J. V., Kang, S. S., Dustin, M. L. & McGavern, D. B. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature457, 191–197 (2009). CASPubMed Google Scholar
Carson, M. J., Reilly, C. R., Sutcliffe, J. G. & Lo, D. Disproportionate recruitment of CD8+ T cells into the central nervous system by professional antigen-presenting cells. Am. J. Pathol.154, 481–494 (1999). CASPubMedPubMed Central Google Scholar
Brabb, T. et al. In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J. Exp. Med.192, 871–880 (2000). CASPubMedPubMed Central Google Scholar
Battistini, L. et al. CD8+ T cells from patients with acute multiple sclerosis display selective increase of adhesiveness in brain venules: a critical role for P-selectin glycoprotein ligand-1. Blood101, 4775–4782 (2003). CASPubMed Google Scholar
Eikelenboom, M. J. et al. Chemokine receptor expression on T cells is related to new lesion development in multiple sclerosis. J. Neuroimmunol.133, 225–232 (2002). CASPubMed Google Scholar
Hafler, D. A. et al. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med.357, 851–862 (2007). CASPubMed Google Scholar
Harrington, C. J. et al. Differential tolerance is induced in T cells recognizing distinct epitopes of myelin basic protein. Immunity8, 571–580 (1998). This paper shows that the dependence of central tolerance on T cell functional avidity for antigen allows some, but not all, MBP-specific immune tolerance to escape immune tolerance. CASPubMed Google Scholar
Anderson, A. C. et al. High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: mechanisms of selection of the self-reactive repertoire. J. Exp. Med.191, 761–770 (2000). CASPubMedPubMed Central Google Scholar
Klein, L., Klugmann, M., Nave, K. A., Tuohy, V. K. & Kyewski, B. Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nature Med.6, 56–61 (2000). CASPubMed Google Scholar
Seamons, A., Perchellet, A. & Goverman, J. Immune tolerance to myelin proteins. Immunol. Res.28, 201–221 (2003). CASPubMed Google Scholar
Cabbage, S. E. et al. Regulatory T cells maintain long-term tolerance to myelin basic protein by inducing a novel, dynamic state of T cell tolerance. J. Immunol.178, 887–896 (2007). CASPubMed Google Scholar
Bielekova, B. et al. Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis. J. Immunol.172, 3893–3904 (2004). CASPubMed Google Scholar
Burns, J., Bartholomew, B. & Lobo, S. Isolation of myelin basic protein-specific T cells predominantly from the memory T-cell compartment in multiple sclerosis. Ann. Neurol.45, 33–39 (1999). CASPubMed Google Scholar
Scholz, C., Patton, K. T., Anderson, D. E., Freeman, G. J. & Hafler, D. A. Expansion of autoreactive T cells in multiple sclerosis is independent of exogenous B7 costimulation. J. Immunol.160, 1532–1538 (1998). CASPubMed Google Scholar
Lovett-Racke, A. E. et al. Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients. A marker of activated/memory T cells. J. Clin. Invest.101, 725–730 (1998). CASPubMedPubMed Central Google Scholar
Ponsford, M. et al. Differential responses of CD45+ve T-cell subsets to MBP in multiple sclerosis. Clin. Exp. Immunol.124, 315–322 (2001). CASPubMedPubMed Central Google Scholar
Zhang, X. et al. Degenerate TCR recognition and dual DR2 restriction of autoreactive T cells: implications for the initiation of the autoimmune response in multiple sclerosis. Eur. J. Immunol.38, 1297–1309 (2008). CASPubMed Google Scholar
Fujinami, R. S. & Oldstone, M. B. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science230, 1043–1045 (1985). CASPubMed Google Scholar
Münz, C., Lünemann, J. D., Getts, M. T. & Miller, S. D. Antiviral immune responses: triggers of or triggered by autoimmunity? Nature Rev. Immunol.9, 246–258 (2009). Google Scholar
Wucherpfennig, K. W. & Strominger, J. L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell80, 695–705 (1995). This paper shows that a search using a molecular mimicry motif based on structural rather than sequence similarity identifies distinct, multiple peptides from microorganisms that can activate human T cells specific for MBP. CASPubMedPubMed Central Google Scholar
Lang, H. L. et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nature Immunol.3, 940–943 (2002). CAS Google Scholar
Tejada-Simon, M. V., Zang, Y. C., Hong, J., Rivera, V. M. & Zhang, J. Z. Cross-reactivity with myelin basic protein and human herpesvirus-6 in multiple sclerosis. Ann. Neurol.53, 189–197 (2003). CASPubMed Google Scholar
Holmoy, T., Kvale, E. O. & Vartdal, F. Cerebrospinal fluid CD4+ T cells from a multiple sclerosis patient cross-recognize Epstein–Barr virus and myelin basic protein. J. Neurovirol.10, 278–283 (2004). CASPubMed Google Scholar
Markovic-Plese, S. et al. High level of cross-reactivity in influenza virus hemagglutinin-specific CD4+ T-cell response: implications for the initiation of autoimmune response in multiple sclerosis. J. Neuroimmunol.169, 31–38 (2005). CASPubMed Google Scholar
Goverman, J. et al. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell72, 551–560 (1993). This paper is the first to show that T cells specific for some epitopes of MBP are not subject to deletion by central tolerancein vivoand that the incidence of spontaneous autoimmunity mediated by these T cells is influenced by environmental factors. CASPubMed Google Scholar
Goverman, J. Tolerance and autoimmunity in TCR transgenic mice specific for myelin basic protein. Immunol. Rev.169, 147–159 (1999). CASPubMedPubMed Central Google Scholar
Krishnamoorthy, G. Cumulative autoimmunity: Myelin oligodendrocyte glycoprotein-specific T cells co-recognize neurofilament-M in a spontaneous experimental autoimmune encephalomyelitis of the C57BL/6 mouse. Nature Med. (in the press).
Gutcher, I. & Becher, B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J. Clin. Invest.117, 1119–1127 (2007). CASPubMedPubMed Central Google Scholar
Panitch, H. S., Hirsch, R. L., Haley, A. S. & Johnson, K. P. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet1, 893–895 (1987). CASPubMed Google Scholar
Baron, J. L., Madri, J. A., Ruddle, N. H., Hashim, G. & Janeway, C. A. Jr. Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J. Exp. Med.177, 57–68 (1993). CASPubMed Google Scholar
Segal, B. M. & Shevach, E. M. IL-12 unmasks latent autoimmune disease in resistant mice. J. Exp. Med.184, 771–775 (1996). CASPubMed Google Scholar
Steinman, L. A brief history of TH17, the first major revision in the T H 1/T H 2 hypothesis of T cell-mediated tissue damage. Nature Med.13, 139–145 (2007). CASPubMed Google Scholar
Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature421, 744–748 (2003). CASPubMed Google Scholar
McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nature Immunol.10, 314–324 (2009). CAS Google Scholar
Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 Cells. Annu. Rev. Immunol.27, 485–517 (2009). CASPubMed Google Scholar
Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med.8, 500–508 (2002). CASPubMed Google Scholar
Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med.201, 233–240 (2005). This paper is the first to show that myelin-specific TH17 cells are more pathogenic following adoptive transfer into naive mice than TH1 cells. CASPubMedPubMed Central Google Scholar
Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunol.6, 1133–1141 (2005). CAS Google Scholar
Hofstetter, H. H. et al. Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell. Immunol.237, 123–130 (2005). CASPubMed Google Scholar
Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol.177, 566–573 (2006). CASPubMed Google Scholar
Axtell, R. C., Xu, L., Barnum, S. R. & Raman, C. CD5–CK2 binding/activation-deficient mice are resistant to experimental autoimmune encephalomyelitis: protection is associated with diminished populations of IL-17-expressing T cells in the central nervous system. J. Immunol.177, 8542–8549 (2006). CASPubMed Google Scholar
Ivanov, II. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell126, 1121–1133 (2006). CASPubMed Google Scholar
Haak, S. et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J. Clin. Invest.119, 61–69 (2009). This paper questions the role of IL-17A and IL-17F by showing that the lack of these cytokinesin vivodoes not significantly affect the manifestation of EAE mediated by MOG35–55-specific T cells in C57BL/6 mice. CASPubMed Google Scholar
Rohn, T. A. et al. Vaccination against IL-17 suppresses autoimmune arthritis and encephalomyelitis. Eur. J. Immunol.36, 2857–2867 (2006). CASPubMed Google Scholar
Luger, D. et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J. Exp. Med.205, 799–810 (2008). CASPubMedPubMed Central Google Scholar
Stromnes, I. M., Cerretti, L. M., Liggitt, D., Harris, R. A. & Goverman, J. M. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nature Med.14, 337–342 (2008). This paper shows that inflammation is regulated differently in the brain compared with the spinal cord and provides evidence that the relative abundance of TH17 and TH1 cells in the infiltrating T cell population is a crucial factor in determining where inflammation localizes within the CNS. CASPubMed Google Scholar
Kroenke, M. A., Carlson, T. J., Andjelkovic, A. V. & Segal, B. M. IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J. Exp. Med.205, 1535–1541 (2008). CASPubMedPubMed Central Google Scholar
O'Connor, R. A. et al. Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J. Immunol.181, 3750–3754 (2008). CASPubMed Google Scholar
Storch, M. K. et al. Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol.8, 681–694 (1998). CASPubMed Google Scholar
Muller, D. M., Pender, M. P. & Greer, J. M. A neuropathological analysis of experimental autoimmune encephalomyelitis with predominant brain stem and cerebellar involvement and differences between active and passive induction. Acta Neuropathol. (Berl.)100, 174–182 (2000). CAS Google Scholar
Wensky, A. K. et al. IFN-γ determines distinct clinical outcomes in autoimmune encephalomyelitis. J. Immunol.174, 1416–1423 (2005). CASPubMed Google Scholar
Lees, J. R., Golumbek, P. T., Sim, J., Dorsey, D. & Russell, J. H. Regional CNS responses to IFN-γ determine lesion localization patterns during EAE pathogenesis. J. Exp. Med.205, 2633–2642 (2008). This paper shows that IFNγ signalling in CNS resident cells is required for inflammation in the spinal cord but inhibits inflammation in the brain. CASPubMedPubMed Central Google Scholar
Tran, E. H., Hoekstra, K., van Rooijen, N., Dijkstra, C. D. & Owens, T. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J. Immunol.161, 3767–3775 (1998). CASPubMed Google Scholar
Greter, M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nature Med.11, 328–334 (2005). This paper shows that DCs, which were previously considered to be scarce or absent from the non-inflamed CNS, are present in the CNS and are sufficient to reactivate primed T cells in the CNS and induce EAE. CASPubMed Google Scholar
Bailey, S. L., Schreiner, B., McMahon, E. J. & Miller, S. D. CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ T H-17 cells in relapsing EAE. Nature Immunol.8, 172–180 (2007). CAS Google Scholar
Deshpande, P., King, I. L. & Segal, B. M. Cutting edge: CNS CD11c+ cells from mice with encephalomyelitis polarize Th17 cells and support CD25+CD4+ T cell-mediated immunosuppression, suggesting dual roles in the disease process. J. Immunol.178, 6695–6699 (2007). CASPubMed Google Scholar
Bailey-Bucktrout, S. L. et al. Cutting edge: central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis. J. Immunol.180, 6457–6461 (2008). CASPubMed Google Scholar
Becher, B., Blain, M. & Antel, J. P. CD40 engagement stimulates IL-12 p70 production by human microglial cells: basis for Th1 polarization in the CNS. J. Neuroimmunol.102, 44–50 (2000). CASPubMed Google Scholar
Ford, A. L., Foulcher, E., Lemckert, F. A. & Sedgwick, J. D. Microglia induce CD4 T lymphocyte final effector function and death. J. Exp. Med.184, 1737–1745 (1996). CASPubMed Google Scholar
Juedes, A. E. & Ruddle, N. H. Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. J. Immunol.166, 5168–5175 (2001). CASPubMed Google Scholar
Becher, B., Durell, B. G., Miga, A. V., Hickey, W. F. & Noelle, R. J. The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J. Exp. Med.193, 967–974 (2001). CASPubMedPubMed Central Google Scholar
Heppner, F. L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nature Med.11, 146–152 (2005). CASPubMed Google Scholar
Nikcevich, K. M. et al. IFN-gamma-activated primary murine astrocytes express B7 costimulatory molecules and prime naive antigen-specific T cells. J. Immunol.158, 614–621 (1997). CASPubMed Google Scholar
Anderson, A. C. et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science318, 1141–1143 (2007). CASPubMed Google Scholar
Goverman, J., Perchellet, A. & Huseby, E. S. The role of CD8+ T cells in multiple sclerosis and its animal models. Curr. Drug Targets Inflamm. Allergy4, 239–245 (2005). CASPubMed Google Scholar
Friese, M. A. & Fugger, L. Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain128, 1747–1763 (2005). PubMed Google Scholar
Coles, A. J. et al. The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J. Neurol.253, 98–108 (2006). PubMed Google Scholar
Junker, A. et al. Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain130, 2789–2799 (2007). PubMed Google Scholar
Crawford, M. P. et al. High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood103, 4222–4231 (2004). CASPubMed Google Scholar
Brynedal, B. et al. HLA-A confers an HLA-DRB1 independent influence on the risk of multiple sclerosis. PLoS ONE2, e664 (2007). PubMedPubMed Central Google Scholar
Burfoot, R. K. et al. SNP mapping and candidate gene sequencing in the class I region of the HLA complex: searching for multiple sclerosis susceptibility genes in Tasmanians. Tissue Antigens71, 42–50 (2008). CASPubMed Google Scholar
Koh, D. R. et al. Less mortality but more relapses in experimental allergic encephalomyelitis in CD8−/− mice. Science256, 1210–1213 (1992). CASPubMed Google Scholar
Jiang, H., Zhang, S.-l. & Pernis, B. Role of CD8+ T cells in murine experimental allergic encephalomyelitis. Science256, 1213–1215 (1992). CASPubMed Google Scholar
Huseby, E. S. et al. A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis. J. Exp. Med.194, 669–676 (2001). This paper shows that CD8+ T cells specific for MBP can induce a distinct form of EAE that recapitulates some aspects of multiple sclerosis not seen in CD4+ T cell-mediated EAE. CASPubMedPubMed Central Google Scholar
Sun, D. et al. Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J. Immunol.166, 7579–7587 (2001). This paper shows that CD8+ T cells specific for MOG can induce EAE pathology. CASPubMed Google Scholar
Friese, M. A. et al. Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis. Nature Med.14, 1227–1235 (2008). This paper uses humanized mice to show that one HLA allele promotes induction of EAE mediated by CD8+ PLP-specific T cells and a different HLA allele protects from disease, thereby identifying mechanisms by which MHC class I alleles can determine susceptibility to multiple sclerosis. CASPubMed Google Scholar
Calzascia, T. et al. Homing phenotypes of tumor-specific CD8 T cells are predetermined at the tumor site by crosspresenting APCs. Immunity22, 175–184 (2005). CASPubMed Google Scholar
Perchellet, A., Brabb, T. & Goverman, J. M. Crosspresentation by nonhematopoietic and direct presentation by hematopoietic cells induce central tolerance to myelin basic protein. Proc. Natl Acad. Sci. USA105, 14040–14045 (2008). CASPubMedPubMed Central Google Scholar
Galea, I. et al. An antigen-specific pathway for CD8 T cells across the blood–brain barrier. J. Exp. Med.204, 2023–2030 (2007). CASPubMedPubMed Central Google Scholar
Na, S. Y. et al. Naive CD8 T-cells initiate spontaneous autoimmunity to a sequestered model antigen of the central nervous system. Brain131, 2353–2365 (2008). PubMed Google Scholar
Saxena, A. et al. Cutting edge: Multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes. J. Immunol.181, 1617–1621 (2008). CASPubMed Google Scholar
Serafini, B. et al. Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain. J. Exp. Med.204, 2899–2912 (2007). CASPubMedPubMed Central Google Scholar
Zang, Y. C. et al. Increased CD8+ cytotoxic T cell responses to myelin basic protein in multiple sclerosis. J. Immunol.172, 5120–5127 (2004). CASPubMed Google Scholar
Tzartos, J. S. et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol.172, 146–155 (2008). CASPubMedPubMed Central Google Scholar
Lafaille, J. J., Nagashima, K., Katsuki, M. & Tonegawa, S. High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell78, 399–408 (1994). CASPubMed Google Scholar
McGeachy, M. J., Stephens, L. A. & Anderton, S. M. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J. Immunol.175, 3025–3032 (2005). CASPubMed Google Scholar
Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nature Med.13, 423–431 (2007). CASPubMed Google Scholar
Pender, M. P. Treating autoimmune demyelination by augmenting lymphocyte apoptosis in the central nervous system. J. Neuroimmunol.191, 26–38 (2007). CASPubMed Google Scholar
O'Connor, R. A. & Anderton, S. M. Foxp3+ regulatory T cells in the control of experimental CNS autoimmune disease. J. Neuroimmunol.193, 1–11 (2008). CASPubMed Google Scholar
Malek, T. R. The biology of interleukin-2. Annu. Rev. Immunol.26, 453–479 (2008). CASPubMed Google Scholar
Zozulya, A. L. & Wiendl, H. The role of CD8 suppressors versus destructors in autoimmune central nervous system inflammation. Hum. Immunol.69, 797–804 (2008). CASPubMed Google Scholar
Rifa'i, M. et al. CD8+CD122+ regulatory T cells recognize activated T cells via conventional MHC class I–αβTCR interaction and become IL-10-producing active regulatory cells. Int. Immunol.20, 937–947 (2008). CASPubMed Google Scholar
Feger, U. et al. HLA-G. expression defines a novel regulatory T-cell subset present in human peripheral blood and sites of inflammation. Blood110, 568–577 (2007). CASPubMed Google Scholar
Najafian, N. et al. Regulatory functions of CD8+CD28− T cells in an autoimmune disease model. J. Clin. Invest.112, 1037–1048 (2003). CASPubMedPubMed Central Google Scholar
Vlad, G., Cortesini, R. & Suciu-Foca, N. License to heal: bidirectional interaction of antigen-specific regulatory T cells and tolerogenic APC. J. Immunol.174, 5907–5914 (2005). CASPubMed Google Scholar
Jiang, H. et al. Regulatory CD8+ T cells fine-tune the myelin basic protein-reactive T cell receptor Vβ repertoire during experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA100, 8378–8383 (2003). CASPubMedPubMed Central Google Scholar
Lu, L., Kim, H. J., Werneck, M. B. & Cantor, H. Regulation of CD8+ regulatory T cells: interruption of the NKG2A–Qa-1 interaction allows robust suppressive activity and resolution of autoimmune disease. Proc. Natl Acad. Sci. USA105, 19420–19425 (2008). CASPubMedPubMed Central Google Scholar
Zhang, J., Medaer, R., Stinissen, P., Hafler, D. & Raus, J. MHC-restricted depletion of human myelin basic protein-reactive T cells by T cell vaccination. Science261, 1451–1454 (1993). CASPubMed Google Scholar
Correale, J. et al. T cell vaccination in secondary progressive multiple sclerosis. J. Neuroimmunol.107, 130–139 (2000). CASPubMed Google Scholar
Tennakoon, D. K. et al. Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J. Immunol.176, 7119–7129 (2006). CASPubMed Google Scholar
Wyss-Coray, T., Borrow, P., Brooker, M. J. & Mucke, L. Astroglial overproduction of TGF-β1 enhances inflammatory central nervous system disease in transgenic mice. J. Neuroimmunol.77, 45–50 (1997). CASPubMed Google Scholar
Luo, J. et al. Glia-dependent TGF-β signaling, acting independently of the TH17 pathway, is critical for initiation of murine autoimmune encephalomyelitis. J. Clin. Invest.117, 3306–3315 (2007). CASPubMedPubMed Central Google Scholar
Bettelli, E. et al. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J. Immunol.161, 3299–3306 (1998). CASPubMed Google Scholar
Stumhofer, J. S. et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nature Immunol.7, 937–945 (2006). CAS Google Scholar
Fitzgerald, D. C. et al. Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis. J. Immunol.179, 3268–3275 (2007). CASPubMed Google Scholar
Pflanz, S. et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity16, 779–790 (2002). CASPubMed Google Scholar
Batten, M. et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nature Immunol.7, 929–936 (2006). CAS Google Scholar
Kleinschek, M. A. et al. IL-25 regulates Th17 function in autoimmune inflammation. J. Exp. Med.204, 161–170 (2007). CASPubMedPubMed Central Google Scholar
Ousman, S. S. et al. Protective and therapeutic role for αB-crystallin in autoimmune demyelination. Nature448, 474–479 (2007). CASPubMed Google Scholar
Beriou, G. et al. IL-17 producing human peripheral regulatory T cells retain suppressive function. Blood 26 Jan 2009 (doi:10.1182/blood-2008-10-183251). CASPubMedPubMed Central Google Scholar
Voo, K. S. et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc. Natl Acad. Sci. USA106, 4793–4798 (2009). CASPubMedPubMed Central Google Scholar
Blink, S. E. & Miller, S. D. The contribution of γδ T cells to the pathogenesis of EAE and MS. Curr. Mol. Med.9, 15–22 (2009). CASPubMedPubMed Central Google Scholar
Ponomarev, E. D. & Dittel, B. N. γδ T cells regulate the extent and duration of inflammation in the central nervous system by a Fas ligand-dependent mechanism. J. Immunol.174, 4678–4687 (2005). CASPubMed Google Scholar
Lees, J. R., Iwakura, Y. & Russell, J. H. Host T cells are the main producers of IL-17 within the central nervous system during initiation of experimental autoimmune encephalomyelitis induced by adoptive transfer of Th1 cell lines. J. Immunol.180, 8066–8072 (2008). CASPubMed Google Scholar
Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med.358, 676–688 (2008). This paper reports the findings of a Phase II clinical trial that indicate depletion of B cells mediated by rituximab is beneficial in patients with multiple sclerosis. CASPubMed Google Scholar
McLaughlin, K. A. & Wucherpfennig, K. W. B cells and autoantibodies in the pathogenesis of multiple sclerosis and related inflammatory demyelinating diseases. Adv. Immunol.98, 121–149 (2008). CASPubMedPubMed Central Google Scholar
Colombo, M. et al. Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J. Immunol.164, 2782–2789 (2000). CASPubMed Google Scholar
Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E. & Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol.14, 164–174 (2004). PubMed Google Scholar
Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain130, 1089–1104 (2007). PubMed Google Scholar
Iglesias, A., Bauer, J., Litzenburger, T., Schubart, A. & Linington, C. T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis. Glia36, 220–234 (2001). CASPubMed Google Scholar
Mathey, E. K. et al. Neurofascin as a novel target for autoantibody-mediated axonal injury. J. Exp. Med.204, 2363–2372 (2007). CASPubMedPubMed Central Google Scholar
Bettelli, E., Baeten, D., Jager, A., Sobel, R. A. & Kuchroo, V. K. Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J. Clin. Invest.116, 2393–2402 (2006). CASPubMedPubMed Central Google Scholar
Krishnamoorthy, G., Lassmann, H., Wekerle, H. & Holz, A. Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J. Clin. Invest.116, 2385–2392 (2006). CASPubMedPubMed Central Google Scholar
Mann, M. K., Maresz, K., Shriver, L. P., Tan, Y. & Dittel, B. N. B cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J. Immunol.178, 3447–3456 (2007). CASPubMed Google Scholar
Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. & Anderton, S. M. B cells regulate autoimmunity by provision of IL-10. Nature Immunol.3, 944–950 (2002). CAS Google Scholar
Matsushita, T., Yanaba, K., Bouaziz, J. D., Fujimoto, M. & Tedder, T. F. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J. Clin. Invest.118, 3420–3430 (2008). CASPubMedPubMed Central Google Scholar
Duddy, M. et al. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J. Immunol.178, 6092–6099 (2007). CASPubMed Google Scholar
Chung, Y. et al. Critical regulation of early TH17 cell differentiation by interleukin-1 signalling. Immunity30, 576–587 (2009). CASPubMedPubMed Central Google Scholar