Hayden, M.S. & Ghosh, S. Shared principles in NF-κB signaling. Cell132, 344–362 (2008). CASPubMed Google Scholar
Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol.27, 693–733 (2009). CASPubMed Google Scholar
Whiteside, S.T., Epinat, J.C., Rice, N.R. & Israel, A. IκB epsilon, a novel member of the IκB family, controls RelA and cRel NF-κB activity. EMBO J.16, 1413–1426 (1997). CASPubMedPubMed Central Google Scholar
Hoffmann, A., Levchenko, A., Scott, M.L. & Baltimore, D. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science298, 1241–1245 (2002). CASPubMed Google Scholar
Sun, S.C., Ganchi, P.A., Ballard, D.W. & Greene, W.C. NF-κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science259, 1912–1915 (1993). CASPubMed Google Scholar
Le Bail, O., Schmidt-Ullrich, R. & Israel, A. Promoter analysis of the gene encoding the IκB-α/MAD3 inhibitor of NF-κB: positive regulation by members of the rel/NF-κB family. EMBO J.12, 5043–5049 (1993). CASPubMedPubMed Central Google Scholar
Kearns, J.D., Basak, S., Werner, S.L., Huang, C.S. & Hoffmann, A. IκBɛ provides negative feedback to control NF-κB oscillations, signaling dynamics, and inflammatory gene expression. J. Cell Biol.173, 659–664 (2006). CASPubMedPubMed Central Google Scholar
Arenzana-Seisdedos, F. et al. Inducible nuclear expression of newly synthesized IκBα negatively regulates DNA-binding and transcriptional activities of NF-κB. Mol. Cell. Biol.15, 2689–2696 (1995). CASPubMedPubMed Central Google Scholar
Rao, P. et al. IκBβ acts to inhibit and activate gene expression during the inflammatory response. Nature466, 1115–1119 (2010). CASPubMedPubMed Central Google Scholar
Scheibel, M. et al. IκBβ is an essential co-activator for LPS-induced IL-1β transcription in vivo. J. Exp. Med.207, 2621–2630 (2010). CASPubMedPubMed Central Google Scholar
Tam, W.F. & Sen, R. IκB family members function by different mechanisms. J. Biol. Chem.276, 7701–7704 (2001). CASPubMed Google Scholar
Chen, L., Fischle, W., Verdin, E. & Greene, W.C. Duration of nuclear NF-κB action regulated by reversible acetylation. Science293, 1653–1657 (2001). CAS Google Scholar
Mahoney, D.J. et al. Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation. Proc. Natl. Acad. Sci. USA105, 11778–11783 (2008). CASPubMedPubMed Central Google Scholar
Ea, C.K., Deng, L., Xia, Z.P., Pineda, G. & Chen, Z.J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell22, 245–257 (2006). CASPubMed Google Scholar
Wu, C.J., Conze, D.B., Li, T., Srinivasula, S.M. & Ashwell, J.D. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nat. Cell Biol. [corrected] 8, 398–406 (2006). CASPubMed Google Scholar
Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell136, 1098–1109 (2009). CASPubMed Google Scholar
Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol.11, 373–384 (2010). CASPubMed Google Scholar
Rawlings, D.J., Sommer, K. & Moreno-Garcia, M.E. The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat. Rev. Immunol.6, 799–812 (2006). CASPubMed Google Scholar
Wertz, I.E. & Dixit, V.M. Signaling to NF-κB: regulation by ubiquitination. Cold Spring Harb. Perspect. Biol.2, a003350 (2010). PubMedPubMed Central Google Scholar
Lee, E.G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science289, 2350–2354 (2000). CASPubMedPubMed Central Google Scholar
Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature430, 694–699 (2004). CASPubMed Google Scholar
Hymowitz, S.G. & Wertz, I.E. A20: from ubiquitin editing to tumour suppression. Nat. Rev. Cancer10, 332–341 (2010). CASPubMed Google Scholar
Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol.5, 1052–1060 (2004). CASPubMed Google Scholar
Mauro, C. et al. ABIN-1 binds to NEMO/IKKγ and co-operates with A20 in inhibiting NF-κB. J. Biol. Chem.281, 18482–18488 (2006). CASPubMed Google Scholar
Hitotsumatsu, O. et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity28, 381–390 (2008). CASPubMedPubMed Central Google Scholar
Duwel, M. et al. A20 negatively regulates T cell receptor signaling to NF-κB by cleaving Malt1 ubiquitin chains. J. Immunol.182, 7718–7728 (2009). PubMed Google Scholar
Iha, H. et al. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO J.27, 629–641 (2008). CASPubMedPubMed Central Google Scholar
Shembade, N. et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat. Immunol.9, 254–262 (2008). CASPubMed Google Scholar
Scharschmidt, E., Wegener, E., Heissmeyer, V., Rao, A. & Krappmann, D. Degradation of Bcl10 induced by T-cell activation negatively regulates NF-κB signaling. Mol. Cell. Biol.24, 3860–3873 (2004). CASPubMedPubMed Central Google Scholar
Wagner, S. et al. Ubiquitin binding mediates the NF-κB inhibitory potential of ABIN proteins. Oncogene27, 3739–3745 (2008). CASPubMed Google Scholar
Enesa, K. et al. NF-κB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J. Biol. Chem.283, 7036–7045 (2008). CASPubMed Google Scholar
Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature424, 801–805 (2003). CASPubMed Google Scholar
Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature424, 793–796 (2003). CASPubMed Google Scholar
Sun, S.C. CYLD: a tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes. Cell Death Differ.17, 25–34 (2010). CASPubMed Google Scholar
Massoumi, R., Chmielarska, K., Hennecke, K., Pfeifer, A. & Fassler, R. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-κB signaling. Cell125, 665–677 (2006). CASPubMed Google Scholar
Reiley, W., Zhang, M., Wu, X., Granger, E. & Sun, S.C. Regulation of the deubiquitinating enzyme CYLD by IκB kinase γ-dependent phosphorylation. Mol. Cell. Biol.25, 3886–3895 (2005). CASPubMedPubMed Central Google Scholar
Burns, K. et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med.197, 263–268 (2003). PubMedPubMed Central Google Scholar
Janssens, S., Burns, K., Vercammen, E., Tschopp, J. & Beyaert, R. MyD88S, a splice variant of MyD88, differentially modulates NF-κB- and AP-1-dependent gene expression. FEBS Lett.548, 103–107 (2003). CASPubMed Google Scholar
Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell110, 191–202 (2002). CASPubMed Google Scholar
Escoll, P. et al. Rapid up-regulation of IRAK-M expression following a second endotoxin challenge in human monocytes and in monocytes isolated from septic patients. Biochem. Biophys. Res. Commun.311, 465–472 (2003). CASPubMed Google Scholar
van 't Veer, C. et al. Induction of IRAK-M is associated with lipopolysaccharide tolerance in a human endotoxemia model. J. Immunol.179, 7110–7120 (2007). CASPubMed Google Scholar
Carty, M. et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat. Immunol.7, 1074–1081 (2006). CASPubMed Google Scholar
Wegener, E. et al. Essential role for IκB kinase β in remodeling Carma1-Bcl10-Malt1 complexes upon T cell activation. Mol. Cell23, 13–23 (2006). CASPubMed Google Scholar
Lobry, C., Lopez, T., Israel, A. & Weil, R. Negative feedback loop in T cell activation through IκB kinase-induced phosphorylation and degradation of Bcl10. Proc. Natl. Acad. Sci. USA104, 908–913 (2007). CASPubMedPubMed Central Google Scholar
Bidere, N. et al. Casein kinase 1α governs antigen-receptor-induced NF-κB activation and human lymphoma cell survival. Nature458, 92–96 (2009). CASPubMed Google Scholar
Liu, B. et al. PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat. Immunol.5, 891–898 (2004). CASPubMed Google Scholar
Tahk, S. et al. Control of specificity and magnitude of NF-κB and STAT1-mediated gene activation through PIASy and PIAS1 cooperation. Proc. Natl. Acad. Sci. USA104, 11643–11648 (2007). CASPubMedPubMed Central Google Scholar
Liu, B. et al. Proinflammatory stimuli induce IKKα-mediated phosphorylation of PIAS1 to restrict inflammation and immunity. Cell129, 903–914 (2007). CASPubMed Google Scholar
Lawrence, T., Bebien, M., Liu, G.Y., Nizet, V. & Karin, M. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature434, 1138–1143 (2005). CASPubMed Google Scholar
Li, Q. et al. Enhanced NF-κB activation and cellular function in macrophages lacking IκB kinase 1 (IKK1). Proc. Natl. Acad. Sci. USA102, 12425–12430 (2005). CASPubMedPubMed Central Google Scholar
Natoli, G. & Chiocca, S. Nuclear ubiquitin ligases, NF-κB degradation, and the control of inflammation. Sci. Signal.1, pe1 (2008). PubMed Google Scholar
Tanaka, T., Grusby, M.J. & Kaisho, T. PDLIM2-mediated termination of transcription factor NF-κB activation by intranuclear sequestration and degradation of the p65 subunit. Nat. Immunol.8, 584–591 (2007). CASPubMed Google Scholar
Maine, G.N., Mao, X., Komarck, C.M. & Burstein, E. COMMD1 promotes the ubiquitination of NF-κB subunits through a cullin-containing ubiquitin ligase. EMBO J.26, 436–447 (2007). CASPubMed Google Scholar
Kinjyo, I. et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity17, 583–591 (2002). CASPubMed Google Scholar
Yang, X.D. et al. Negative regulation of NF-κB action by Set9-mediated lysine methylation of the RelA subunit. EMBO J.28, 1055–1066 (2009). CASPubMedPubMed Central Google Scholar
Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κ B signaling pathway. Science293, 1495–1499 (2001). CASPubMed Google Scholar
Xiao, G., Harhaj, E.W. & Sun, S.C. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell7, 401–409 (2001). CASPubMed Google Scholar
Liao, G., Zhang, M., Harhaj, E.W. & Sun, S.C. Regulation of the NF-κB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J. Biol. Chem.279, 26243–26250 (2004). CASPubMed Google Scholar
Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell131, 669–681 (2007). CASPubMed Google Scholar
Zarnegar, B.J. et al. Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat. Immunol.9, 1371–1378 (2008). CASPubMedPubMed Central Google Scholar
Yeh, W.C. et al. Early lethality, functional NF-κB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity7, 715–725 (1997). CASPubMed Google Scholar
Vallabhapurapu, S. et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling. Nat. Immunol.9, 1364–1370 (2008). CASPubMedPubMed Central Google Scholar
Razani, B. et al. Negative feedback in noncanonical NF-κB signaling modulates NIK stability through IKKα-mediated phosphorylation. Sci. Signal.3, ra41 (2010). PubMedPubMed Central Google Scholar
Oeckinghaus, A. & Ghosh, S. The NF-κB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol.1, a000034 (2009). PubMedPubMed Central Google Scholar
Baltimore, D., Boldin, M.P., O'Connell, R.M., Rao, D.S. & Taganov, K.D. MicroRNAs: new regulators of immune cell development and function. Nat. Immunol.9, 839–845 (2008). CASPubMed Google Scholar
O'Neill, L.A., Sheedy, F.J. & McCoy, C.E. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat. Rev. Immunol.11, 163–175 (2011). CASPubMed Google Scholar
Taganov, K.D., Boldin, M.P., Chang, K.J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA103, 12481–12486 (2006). CASPubMedPubMed Central Google Scholar
Ceppi, M. et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc. Natl. Acad. Sci. USA106, 2735–2740 (2009). CASPubMedPubMed Central Google Scholar
Tang, B. et al. Identification of MyD88 as a novel target of miR-155, involved in negative regulation of _Helicobacter pylori_-induced inflammation. FEBS Lett.584, 1481–1486 (2010). CASPubMed Google Scholar
Jungnickel, B. et al. Clonal deleterious mutations in the IκBα gene in the malignant cells in Hodgkin's lymphoma. J. Exp. Med.191, 395–402 (2000). CASPubMedPubMed Central Google Scholar
Bredel, M. et al. NFKBIA deletion in glioblastomas. N. Engl. J. Med.364, 627–637 (2011). CASPubMed Google Scholar
Kato, M. et al. Frequent inactivation of A20 in B-cell lymphomas. Nature459, 712–716 (2009). CASPubMed Google Scholar
Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature459, 717–721 (2009). CASPubMedPubMed Central Google Scholar
Ferch, U. et al. Inhibition of MALT1 protease activity is selectively toxic for activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med.206, 2313–2320 (2009). CASPubMedPubMed Central Google Scholar
Musone, S.L. et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat. Genet.40, 1062–1064 (2008). CASPubMedPubMed Central Google Scholar
Plenge, R.M. et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat. Genet.39, 1477–1482 (2007). CASPubMedPubMed Central Google Scholar
Nair, R.P. et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nat. Genet.41, 199–204 (2009). CASPubMedPubMed Central Google Scholar
Balaci, L. et al. IRAK-M is involved in the pathogenesis of early-onset persistent asthma. Am. J. Hum. Genet.80, 1103–1114 (2007). CASPubMedPubMed Central Google Scholar
Keats, J.J. et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell12, 131–144 (2007). CASPubMedPubMed Central Google Scholar
Annunziata, C.M. et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell12, 115–130 (2007). CASPubMedPubMed Central Google Scholar
Rosebeck, S. et al. Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-κB activation. Science331, 468–472 (2011). CASPubMedPubMed Central Google Scholar