Human cytomegalovirus microRNA miR-US4-1 inhibits CD8+ T cell responses by targeting the aminopeptidase ERAP1 (original) (raw)
Hansen, T.H. & Bouvier, M. MHC class I antigen presentation: learning from viral evasion strategies. Nat. Rev. Immunol.9, 503–513 (2009). ArticleCAS Google Scholar
Vyas, J.M., Van der Veen, A.G. & Ploegh, H.L. The known unknowns of antigen processing and presentation. Nat. Rev. Immunol.8, 607–618 (2008). ArticleCAS Google Scholar
Nguyen, T.T. et al. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nat. Struct. Mol. Biol.18, 604–613 (2011). ArticleCAS Google Scholar
Haroon, N. & Inman, R.D. Endoplasmic reticulum aminopeptidases: Biology and pathogenic potential. Nat. Rev. Rheumatol.6, 461–467 (2010). ArticleCAS Google Scholar
Saric, T. et al. An IFN-γ-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I–presented peptides. Nat. Immunol.3, 1169–1176 (2002). ArticleCAS Google Scholar
Saveanu, L. et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat. Immunol.6, 689–697 (2005). ArticleCAS Google Scholar
Kanaseki, T. & Shastri, N. Endoplasmic reticulum aminopeptidase associated with antigen processing regulates quality of processed peptides presented by MHC class I molecules. J. Immunol.181, 6275–6282 (2008). ArticleCAS Google Scholar
Hammer, G.E., Gonzalez, F., James, E., Nolla, H. & Shastri, N. In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. Nat. Immunol.8, 101–108 (2007). ArticleCAS Google Scholar
Chang, S.C., Momburg, F., Bhutani, N. & Goldberg, A.L. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a “molecular ruler” mechanism. Proc. Natl. Acad. Sci. USA102, 17107–17112 (2005). ArticleCAS Google Scholar
Fabian, M.R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem.79, 351–379 (2010). ArticleCAS Google Scholar
Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science304, 734–736 (2004). ArticleCAS Google Scholar
Cullen, B.R. Viral and cellular messenger RNA targets of viral microRNAs. Nature457, 421–425 (2009). ArticleCAS Google Scholar
Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nat. Methods2, 269–276 (2005). ArticleCAS Google Scholar
Grey, F. et al. Identification and characterization of human cytomegalovirus-encoded microRNAs. J. Virol.79, 12095–12099 (2005). ArticleCAS Google Scholar
Grey, F., Meyers, H., White, E.A., Spector, D.H. & Nelson, J. A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog.3, e163 (2007). Article Google Scholar
Grey, F. et al. A viral microRNA down-regulates multiple cell cycle genes through mRNA 5′UTRs. PLoS Pathog.6, e1000967 (2010). Article Google Scholar
Stern-Ginossar, N. et al. Host immune system gene targeting by a viral miRNA. Science317, 376–381 (2007). ArticleCAS Google Scholar
Stern-Ginossar, N. et al. Analysis of human cytomegalovirus-encoded microRNA activity during infection. J. Virol.83, 10684–10693 (2009). ArticleCAS Google Scholar
Rehm, A. et al. Human cytomegalovirus gene products US2 and US11 differ in their ability to attack major histocompatibility class I heavy chains in dendritic cells. J. Virol.76, 5043–5050 (2002). ArticleCAS Google Scholar
Machold, R.P., Wiertz, E.J., Jones, T.R. & Ploegh, H.L. The HCMV gene products US11 and US2 differ in their ability to attack allelic forms of murine major histocompatibility complex (MHC) class I heavy chains. J. Exp. Med.185, 363–366 (1997). ArticleCAS Google Scholar
Gruhler, A., Peterson, P.A. & Fruh, K. Human cytomegalovirus immediate early glycoprotein US3 retains MHC class I molecules by transient association. Traffic1, 318–325 (2000). ArticleCAS Google Scholar
Lehner, P.J., Karttunen, J.T., Wilkinson, G.W. & Cresswell, P. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc. Natl. Acad. Sci. USA94, 6904–6909 (1997). ArticleCAS Google Scholar
Park, B., Spooner, E., Houser, B.L., Strominger, J.L. & Ploegh, H.L. The HCMV membrane glycoprotein US10 selectively targets HLA-G for degradation. J. Exp. Med.207, 2033–2041 (2010). ArticleCAS Google Scholar
Gustems, M. et al. Regulation of the transcription and replication cycle of human cytomegalovirus is insensitive to genetic elimination of the cognate NF-kappa B binding sites in the enhancer. J. Virol.80, 9899–9904 (2006). ArticleCAS Google Scholar
Wu, J., O'Neill, J. & Barbosa, M.S. Transcription factor Sp1 mediates cell-specific trans-activation of the human cytomegalovirus DNA polymerase gene promoter by immediate-early protein IE86 in glioblastoma U373MG cells. J. Virol.72, 236–244 (1998). CASPubMedPubMed Central Google Scholar
Chekulaeva, M. & Filipowicz, W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr. Opin. Cell Biol.21, 452–460 (2009). ArticleCAS Google Scholar
Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005). ArticleCAS Google Scholar
Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA10, 1507–1517 (2004). ArticleCAS Google Scholar
Miranda, K.C. et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell126, 1203–1217 (2006). ArticleCAS Google Scholar
Wang, W.X., Wilfred, B.R., Hu, Y., Stromberg, A.J. & Nelson, P.T. Anti-Argonaute RIP-Chip shows that miRNA transfections alter global patterns of mRNA recruitment to microribonucleoprotein complexes. RNA16, 394–404 (2010). ArticleCAS Google Scholar
Nonne, N., Ameyar-Zazoua, M., Souidi, M. & Harel-Bellan, A. Tandem affinity purification of miRNA target mRNAs (TAP-Tar). Nucleic Acids Res.38, e20 (2010). Article Google Scholar
Moore, L.M. & Zhang, W. Targeting miR-21 in glioma: a small RNA with big potential. Expert Opin. Ther. Targets14, 1247–1257 (2010). ArticleCAS Google Scholar
Peters, L. & Meister, G. Argonaute proteins: mediators of RNA silencing. Mol. Cell26, 611–623 (2007). ArticleCAS Google Scholar
York, I.A., Brehm, M.A., Zendzian, S., Towne, C.F. & Rock, K.L. Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance. Proc. Natl. Acad. Sci. USA103, 9202–9207 (2006). ArticleCAS Google Scholar
Karttunen, J., Sanderson, S. & Shastri, N. Detection of rare antigen-presenting cells by the lacZ T-cell activation assay suggests an expression cloning strategy for T-cell antigens. Proc. Natl. Acad. Sci. USA89, 6020–6024 (1992). ArticleCAS Google Scholar
Shastri, N. & Gonzalez, F. Endogenous generation and presentation of the ovalbumin peptide/Kb complex to T cells. J. Immunol.150, 2724–2736 (1993). CASPubMed Google Scholar
Firat, E. et al. The role of endoplasmic reticulum-associated aminopeptidase 1 in immunity to infection and in cross-presentation. J. Immunol.178, 2241–2248 (2007). ArticleCAS Google Scholar
Yan, J. et al. In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. J. Exp. Med.203, 647–659 (2006). ArticleCAS Google Scholar
Blanchard, N. et al. Endoplasmic reticulum aminopeptidase associated with antigen processing defines the composition and structure of MHC class I peptide repertoire in normal and virus-infected cells. J. Immunol.184, 3033–3042 (2010). ArticleCAS Google Scholar
Tanioka, T. et al. Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases. J. Biol. Chem.278, 32275–32283 (2003). ArticleCAS Google Scholar
Fruci, D. et al. Altered expression of endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 in transformed non-lymphoid human tissues. J. Cell. Physiol.216, 742–749 (2008). ArticleCAS Google Scholar
Georgiadou, D. et al. Placental leucine aminopeptidase efficiently generates mature antigenic peptides in vitro but in patterns distinct from endoplasmic reticulum aminopeptidase 1. J. Immunol.185, 1584–1592 (2010). ArticleCAS Google Scholar
Hansen, S.G. et al. Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. Science328, 102–106 (2010). ArticleCAS Google Scholar
Manley, T.J. et al. Immune evasion proteins of human cytomegalovirus do not prevent a diverse CD8+ cytotoxic T-cell response in natural infection. Blood104, 1075–1082 (2004). ArticleCAS Google Scholar
Evnouchidou, I. et al. The internal sequence of the peptide-substrate determines its N-terminus trimming by ERAP1. PLoS ONE3, e3658 (2008). Article Google Scholar
Niles, A.L., Moravec, R.A. & Riss, T.L. In vitro viability and cytotoxicity testing and same-well multi-parametric combinations for high throughput screening. Curr Chem Genomics3, 33–41 (2009). ArticleCAS Google Scholar
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419 (2003). ArticleCAS Google Scholar