- Goverman, J. Autoimmune T cell responses in the central nervous system. Nat. Rev. Immunol. 9, 393–407 (2009).
CAS PubMed PubMed Central Google Scholar
- Tompkins, S.M. et al. De novo central nervous system processing of myelin antigen is required for the initiation of experimental autoimmune encephalomyelitis. J. Immunol. 168, 4173–4183 (2002).
CAS PubMed Google Scholar
- Kawakami, N. et al. The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J. Exp. Med. 199, 185–197 (2004).
CAS PubMed PubMed Central Google Scholar
- Greter, M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11, 328–334 (2005).
CAS PubMed Google Scholar
- King, I.L., Dickendesher, T.L. & Segal, B.M. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113, 3190–3197 (2009).
CAS PubMed PubMed Central Google Scholar
- Mildner, A. et al. CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132, 2487–2500 (2009).
PubMed Google Scholar
- McRae, B.L., Vanderlugt, C.L., Dal Canto, M.C. & Miller, S.D. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J. Exp. Med. 182, 75–85 (1995).
CAS PubMed Google Scholar
- Tuohy, V.K. et al. The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol. Rev. 164, 93–100 (1998).
CAS PubMed Google Scholar
- Mars, L.T., Saikali, P., Liblau, R.S. & Arbour, N. Contribution of CD8 T lymphocytes to the immuno-pathogenesis of multiple sclerosis and its animal models. Biochim. Biophys. Acta 1812, 151–161 (2011).
CAS PubMed Google Scholar
- Zozulya, A.L. & Wiendl, H. The role of CD8 suppressors versus destructors in autoimmune central nervous system inflammation. Hum. Immunol. 69, 797–804 (2008).
CAS PubMed Google Scholar
- Babbe, H. et al. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192, 393–404 (2000).
CAS PubMed PubMed Central Google Scholar
- Gay, F.W., Drye, T.J., Dick, G.W. & Esiri, M.M. The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of the primary demyelinating lesion. Brain 120, 1461–1483 (1997).
PubMed Google Scholar
- Bitsch, A., Schuchardt, J., Bunkowski, S., Kuhlmann, T. & Bruck, W. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123, 1174–1183 (2000).
PubMed Google Scholar
- Neumann, H., Medana, I.M., Bauer, J. & Lassmann, H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 25, 313–319 (2002).
CAS PubMed Google Scholar
- Jacobsen, M. et al. Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 125, 538–550 (2002).
PubMed Google Scholar
- Junker, A. et al. Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain 130, 2789–2799 (2007).
PubMed Google Scholar
- Skulina, C. et al. Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc. Natl. Acad. Sci. USA 101, 2428–2433 (2004).
CAS PubMed PubMed Central Google Scholar
- Crawford, M.P. et al. High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood 103, 4222–4231 (2004).
CAS PubMed Google Scholar
- Zang, Y.C. et al. Increased CD8+ cytotoxic T cell responses to myelin basic protein in multiple sclerosis. J. Immunol. 172, 5120–5127 (2004).
CAS PubMed Google Scholar
- Mars, L.T. et al. CD8 T cell responses to myelin oligodendrocyte glycoprotein-derived peptides in humanized HLA-A*0201-transgenic mice. J. Immunol. 179, 5090–5098 (2007).
CAS PubMed Google Scholar
- Huseby, E.S. et al. A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J. Exp. Med. 194, 669–676 (2001).
CAS PubMed PubMed Central Google Scholar
- Sun, D. et al. Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J. Immunol. 166, 7579–7587 (2001).
CAS PubMed Google Scholar
- Friese, M.A. et al. Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis. Nat. Med. 14, 1227–1235 (2008).
CAS PubMed Google Scholar
- Perchellet, A., Stromnes, I., Pang, J.M. & Goverman, J. CD8+ T cells maintain tolerance to myelin basic protein by 'epitope theft'. Nat. Immunol. 5, 606–614 (2004).
CAS PubMed Google Scholar
- Stromnes, I.M., Cerretti, L.M., Liggitt, D., Harris, R.A. & Goverman, J.M. Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat. Med. 14, 337–342 (2008).
CAS PubMed PubMed Central Google Scholar
- Huseby, E.S., Ohlen, C. & Goverman, J. Cutting edge: myelin basic protein-specific cytotoxic T cell tolerance is maintained in vivo by a single dominant epitope in H-2k mice. J. Immunol. 163, 1115–1118 (1999).
CAS PubMed Google Scholar
- Fischer, H.G. & Reichmann, G. Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J. Immunol. 166, 2717–2726 (2001).
CAS PubMed Google Scholar
- Bailey, S.L., Schreiner, B., McMahon, E.J. & Miller, S.D. CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ T(H)-17 cells in relapsing EAE. Nat. Immunol. 8, 172–180 (2007).
CAS PubMed Google Scholar
- Deshpande, P., King, I.L. & Segal, B.M. Cutting edge: CNS CD11c+ cells from mice with encephalomyelitis polarize Th17 cells and support CD25+CD4+ T cell-mediated immunosuppression, suggesting dual roles in the disease process. J. Immunol. 178, 6695–6699 (2007).
CAS PubMed Google Scholar
- Saederup, N. et al. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS ONE 5, e13693 (2010).
PubMed PubMed Central Google Scholar
- Sica, A. et al. Bacterial lipopolysaccharide rapidly inhibits expression of C–C chemokine receptors in human monocytes. J. Exp. Med. 185, 969–974 (1997).
CAS PubMed PubMed Central Google Scholar
- Shortman, K. & Heath, W.R. The CD8+ dendritic cell subset. Immunol. Rev. 234, 18–31 (2010).
CAS PubMed Google Scholar
- Sathe, P. et al. The acquisition of antigen cross-presentation function by newly formed dendritic cells. J. Immunol. 186, 5184–5192 (2011).
CAS PubMed Google Scholar
- Satpathy, A.T., Murphy, K.M. & Kc, W. Transcription factor networks in dendritic cell development. Semin. Immunol. 23, 388–397 (2011).
CAS PubMed PubMed Central Google Scholar
- Satpathy, A.T. et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209, 1135–1152 (2012).
CAS PubMed PubMed Central Google Scholar
- Meredith, M.M. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209, 1153–1165 (2012).
CAS PubMed PubMed Central Google Scholar
- Serbina, N.V., Salazar-Mather, T.P., Biron, C.A., Kuziel, W.A. & Pamer, E.G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003).
CAS PubMed Google Scholar
- Feng, J.M. Minireview: expression and function of golli protein in immune system. Neurochem. Res. 32, 273–278 (2007).
CAS PubMed Google Scholar
- Chastain, E.M., Duncan, D.S., Rodgers, J.M. & Miller, S.D. The role of antigen presenting cells in multiple sclerosis. Biochim. Biophys. Acta 1812, 265–274 (2011).
CAS PubMed Google Scholar
- Galea, I. et al. An antigen-specific pathway for CD8 T cells across the blood-brain barrier. J. Exp. Med. 204, 2023–2030 (2007).
CAS PubMed PubMed Central Google Scholar
- Ji, Q., Perchellet, A. & Goverman, J.M. Viral infection triggers central nervous system autoimmunity via activation of CD8+ T cells expressing dual TCRs. Nat. Immunol. 11, 628–634 (2010).
CAS PubMed PubMed Central Google Scholar
- Serafini, B. et al. Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J. Neuropathol. Exp. Neurol. 65, 124–141 (2006).
CAS PubMed Google Scholar
- Cudrici, C. et al. Dendritic cells are abundant in non-lesional gray matter in multiple sclerosis. Exp. Mol. Pathol. 83, 198–206 (2007).
CAS PubMed PubMed Central Google Scholar
- Fitzner, D. et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J. Cell Sci. 124, 447–458 (2011).
CAS PubMed Google Scholar
- Wakim, L.M. & Bevan, M.J. Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature 471, 629–632 (2011).
CAS PubMed PubMed Central Google Scholar
- Davis, D.M. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat. Rev. Immunol. 7, 238–243 (2007).
CAS PubMed Google Scholar
- Matheoud, D. et al. Cross-presentation by dendritic cells from live cells induces protective immune responses in vivo. Blood 115, 4412–4420 (2010).
CAS PubMed Google Scholar
- Calzascia, T. et al. Homing phenotypes of tumor-specific CD8 T cells are predetermined at the tumor site by crosspresenting APCs. Immunity 22, 175–184 (2005).
CAS PubMed Google Scholar
- Bartholomaus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).
PubMed Google Scholar
- Jurewicz, A., Biddison, W.E. & Antel, J.P. MHC class I-restricted lysis of human oligodendrocytes by myelin basic protein peptide-specific CD8 T lymphocytes. J. Immunol. 160, 3056–3059 (1998).
CAS PubMed Google Scholar
- Kornek, B. et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol. 157, 267–276 (2000).
CAS PubMed PubMed Central Google Scholar