Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med.205, 1601–1610 (2008). ArticleCASPubMedPubMed Central Google Scholar
Stetson, D.B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity24, 93–103 (2006). ArticleCASPubMed Google Scholar
Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science339, 786–791 (2013). ArticleCASPubMed Google Scholar
Jin, T. et al. Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity36, 561–571 (2012). ArticleCASPubMedPubMed Central Google Scholar
Liao, J.C. et al. Interferon-inducible protein 16: insight into the interaction with tumor suppressor p53. Structure19, 418–429 (2011). ArticleCASPubMedPubMed Central Google Scholar
Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell134, 587–598 (2008). ArticleCASPubMedPubMed Central Google Scholar
Crow, Y.J. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet.38, 917–920 (2006). ArticleCASPubMed Google Scholar
Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity36, 120–131 (2012). ArticleCASPubMedPubMed Central Google Scholar
Garneau, N.L., Wilusz, J. & Wilusz, C.J. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol.8, 113–126 (2007). ArticleCASPubMed Google Scholar
Brown, J.T., Bai, X. & Johnson, A.W. The yeast antiviral proteins Ski2p, Ski3p, and Ski8p exist as a complex in vivo. RNA6, 449–457 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fernando, M.M. et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom families. PLoS Genet.3, e192 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Saito, T., Owen, D.M., Jiang, F., Marcotrigiano, J. & Gale, M. Jr. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature454, 523–527 (2008). ArticleCASPubMedPubMed Central Google Scholar
Roberts, Z.J. et al. The chemotherapeutic agent DMXAA potently and specifically activates the TBK1-IRF-3 signaling axis. J. Exp. Med.204, 1559–1569 (2007). ArticleCASPubMedPubMed Central Google Scholar
Conlon, J. et al. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J. Immunol.190, 5216–5225 (2013). ArticleCASPubMed Google Scholar
Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science301, 640–643 (2003). ArticleCASPubMed Google Scholar
Bernales, S., Papa, F.R. & Walter, P. Intracellular signaling by the unfolded protein response. Annu. Rev. Cell Dev. Biol.22, 487–508 (2006). ArticleCASPubMed Google Scholar
Travers, K.J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell101, 249–258 (2000). ArticleCASPubMed Google Scholar
Cox, J.S., Shamu, C.E. & Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell73, 1197–1206 (1993). ArticleCASPubMed Google Scholar
Mori, K., Ma, W., Gething, M.J. & Sambrook, J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell74, 743–756 (1993). ArticleCASPubMed Google Scholar
Credle, J.J., Finer-Moore, J.S., Papa, F.R., Stroud, R.M. & Walter, P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA102, 18773–18784 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gardner, B.M. & Walter, P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science333, 1891–1894 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cox, J.S. & Walter, P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell87, 391–404 (1996). ArticleCASPubMed Google Scholar
Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature415, 92–96 (2002). ArticleCASPubMed Google Scholar
Sidrauski, C., Cox, J.S. & Walter, P. tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell87, 405–413 (1996). ArticleCASPubMed Google Scholar
Hollien, J. & Weissman, J.S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science313, 104–107 (2006). ArticleCASPubMed Google Scholar
Malathi, K., Dong, B., Gale, M. Jr. & Silverman, R.H. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature448, 816–819 (2007). ArticleCASPubMedPubMed Central Google Scholar
Takahasi, K. et al. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol. Cell29, 428–440 (2008). ArticleCASPubMed Google Scholar
Cho, J.A. et al. The unfolded protein response element IRE1α senses bacterial proteins invading the ER to activate RIG-I and innate immune signaling. Cell Host Microbe13, 558–569 (2013). ArticleCASPubMedPubMed Central Google Scholar
Han, D. et al. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell138, 562–575 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science343, 84–87 (2014). ArticleCASPubMed Google Scholar
Sun, Q. et al. The specific and essential role of MAVS in antiviral innate immune responses. Immunity24, 633–642 (2006). ArticleCASPubMed Google Scholar
Fabre, A., Martinez-Vinson, C., Goulet, O. & Badens, C. Syndromic diarrhea/Tricho-hepato-enteric syndrome. Orphanet J. Rare Dis.8, 5 (2013). ArticlePubMedPubMed Central Google Scholar
Hartley, J.L. et al. Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy). Gastroenterology138, 2388–2398 (2010). ArticleCASPubMed Google Scholar
Fabre, A. et al. Novel mutations in TTC37 associated with tricho-hepato-enteric syndrome. Hum. Mutat.32, 277–281 (2011). ArticleCASPubMed Google Scholar
Rice, G.I. et al. Assessment of interferon-related biomarkers in Aicardi-Goutieres syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol.12, 1159–1169 (2013). ArticleCASPubMedPubMed Central Google Scholar