Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins (original) (raw)
Rossant, J. & Howard, L. Signaling pathways in vascular development. Annu. Rev. Cell Dev. Biol.18, 541–573 (2002). ArticleCAS Google Scholar
De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science264, 703–707 (1994). ArticleCAS Google Scholar
Rennert, P.D., Browning, J.L., Mebius, R., Mackay, F. & Hochman, P.S. Surface lymphotoxin a/b complex is required for the development of peripheral lymphoid organs. J. Exp. Med.184, 1999–2006 (1996). ArticleCAS Google Scholar
Mebius, R.E. Organogenesis of lymphoid tissues. Nat. Rev. Immunol.3, 292–303 (2003). ArticleCAS Google Scholar
Futterer, A., Mink, K., Luz, A., Kosco-Vilbois, M.H. & Pfeffer, K. The lymphotoxin b receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity9, 59–70 (1998). ArticleCAS Google Scholar
Sabin, F.R. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am. J. Anat.1, 367–391 (1902). Article Google Scholar
van der Putte, S.C.J. The early development of the lymphatic system in mouse embryos. Acta Morphol. Neerl.-Scand.13, 245–286 (1975). CASPubMed Google Scholar
Oliver, G. & Detmar, M. The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev.16, 773–783 (2002). ArticleCAS Google Scholar
Wigle, J.T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell98, 769–778 (1999). ArticleCAS Google Scholar
Wigle, J.T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J.21, 1505–1513 (2002). ArticleCAS Google Scholar
Petrova, T.V. et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J.21, 4593–4599 (2002). ArticleCAS Google Scholar
Hong, Y.K. et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev. Dyn.225, 351–357 (2002). ArticleCAS Google Scholar
Dumont, D.J. et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science282, 946–949 (1998). ArticleCAS Google Scholar
Kaipainen, A. et al. Expression of the _fms_-like tyrosine kinase FLT4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl. Acad. Sci. USA92, 3566–3570 (1995). ArticleCAS Google Scholar
Makinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J.20, 4762–4773 (2001). ArticleCAS Google Scholar
Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science276, 1423–1425 (1997). ArticleCAS Google Scholar
Veikkola, T. et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J.6, 1223–1231 (2001). Article Google Scholar
Karkkainen, M.J. et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat. Genet.25, 153–159 (2000). ArticleCAS Google Scholar
Joukov, V. et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J.16, 3898–3911 (1997). ArticleCAS Google Scholar
Achen, M.G. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl. Acad. Sci. USA95, 548–553 (1998). ArticleCAS Google Scholar
Saaristo, A. et al. Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. FASEB J.16, 1041–1049 (2002). ArticleCAS Google Scholar
Stacker, S.A. et al. Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J. Biol. Chem.274, 32127–32136 (1999). ArticleCAS Google Scholar
Kukk, E. et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development122, 3829–3837 (1996). CASPubMed Google Scholar
Prevo, R., Banerji, S., Ferguson, D.J.P., Clasper, S. & Jackson, D.G. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J. Biol. Chem.276, 19420–19430 (2001). ArticleCAS Google Scholar
Breiteneder-Geleff, S. et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am. J. Pathol.154, 385–394 (1999). ArticleCAS Google Scholar
Schacht, V. et al. T1a/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J.22, 3546–3556 (2003). ArticleCAS Google Scholar
Baldwin, M.E. et al. The specificity of receptor binding by vascular endothelial growth factor-D is different in mouse and man. J. Biol. Chem.276, 19166–19171 (2001). ArticleCAS Google Scholar
Shalaby, F. et al. Failure of blood island formation and vasculogenesis in Flk-1-deficient mice. Nature376, 62–66 (1995). ArticleCAS Google Scholar
Avantaggiato, V., Orlandini, M., Acampora, D., Oliviero, S. & Simeone, A. Embryonic expression pattern of the murine figf gene, a growth factor belonging to platelet-derived growth factor/vascular endothelial growth factor family. Mech. Dev.73, 221–224 (1998). ArticleCAS Google Scholar
Karkkainen, M.J. et al. A model for gene therapy of human hereditary lymphedema. Proc. Natl. Acad. Sci. USA98, 12677–12682 (2001). ArticleCAS Google Scholar
Yuan, L. et al. Abnormal lymphatic vessel development in neuropilin-2 mutant mice. Development129, 4797–4806 (2002). CASPubMed Google Scholar
Soker, S., Takashima, S., Miao, H.Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell92, 735–745 (1998). ArticleCAS Google Scholar
Gale, N.W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role Is rescued by angiopoietin-1. Dev. Cell3, 411–423 (2002). ArticleCAS Google Scholar
Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature380, 435–439 (1996). ArticleCAS Google Scholar
Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature380, 439–442 (1996). ArticleCAS Google Scholar
Bellomo, D. et al. Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ. Res.86, E29–E35 (2000). ArticleCAS Google Scholar
Aase, K. et al. Vascular endothelial growth factor-B-deficient mice display an atrial conduction defect. Circulation104, 358–364 (2001). ArticleCAS Google Scholar
Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat. Med.7, 575–583 (2001). ArticleCAS Google Scholar
Puri, M.C., Rossant, J., Alitalo, K., Bernstein, A. & Partanen, J. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J.14, 5884–5891 (1995). ArticleCAS Google Scholar
Kubo, H. et al. Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood96, 546–553 (2000). CASPubMed Google Scholar
Laakkonen, P., Porkka, K., Hoffman, J.A. & Ruoslahti, E. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat. Med.8, 751–755 (2002). ArticleCAS Google Scholar
Sainio, K. Experimental methods for studying urogenital development. The Kidney. From normal development to congenital disease (eds. Vize, P.D., Woolf, A.S. & Bard, J.B.L.) 327–342 (Elsevier Science, San Diego, 2003). Google Scholar
Sainio, K. et al. Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development124, 4077–4087 (1997). CASPubMed Google Scholar
Larsen, W.J. Human Embryology. 192 (Harcourt, New York, 1993). Google Scholar