Medzhitov, R. & Janeway, C.A., Jr. An ancient system of host defense. Curr. Opin. Immunol.10, 12–15 (1998). ArticleCASPubMed Google Scholar
Gravato-Nobre, M.J. & Hodgkin, J. Caenorhabditis elegans as a model for innate immunity to pathogens. Cell. Microbiol.7, 741–751 (2005). ArticleCASPubMed Google Scholar
Kim, D.H. & Ausubel, F.M. Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Curr. Opin. Immunol.17, 4–10 (2005). ArticleCASPubMed Google Scholar
Kurz, C.L. & Ewbank, J.J. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat. Rev. Genet.4, 380–390 (2003). ArticleCASPubMed Google Scholar
Millet, A.C. & Ewbank, J.J. Immunity in Caenorhabditis elegans. Curr. Opin. Immunol.16, 4–9 (2004). ArticleCASPubMed Google Scholar
Schulenburg, H., Kurz, C.L. & Ewbank, J.J. Evolution of the innate immune system: the worm perspective. Immunol. Rev.198, 36–58 (2004). ArticleCASPubMed Google Scholar
Beutler, B. & Rehli, M. Evolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr. Top. Microbiol. Immunol.270, 1–21 (2002). CASPubMed Google Scholar
Brennan, C.A. & Anderson, K.V. Drosophila: the genetics of innate immune recognition and response. Annu. Rev. Immunol.22, 457–483 (2004). ArticleCASPubMed Google Scholar
Hoffmann, J.A. & Reichhart, J.M. Drosophila innate immunity: an evolutionary perspective. Nat. Immunol.3, 121–126 (2002). ArticleCASPubMed Google Scholar
Janeway, C.A., Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol.20, 197–216 (2002). ArticleCASPubMed Google Scholar
Medzhitov, R. & Janeway, C., Jr. The Toll receptor family and microbial recognition. Trends Microbiol.8, 452–456 (2000). ArticleCASPubMed Google Scholar
Royet, J. Infectious non-self recognition in invertebrates: lessons from Drosophila and other insect models. Mol. Immunol.41, 1063–1075 (2004). ArticleCASPubMed Google Scholar
Aderem, A. & Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature406, 782–787 (2000). ArticleCASPubMed Google Scholar
Anderson, K.V. Toll signaling pathways in the innate immune response. Curr. Opin. Immunol.12, 13–19 (2000). ArticleCASPubMed Google Scholar
Belvin, M.P. & Anderson, K.V. A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu. Rev. Cell Dev. Biol.12, 393–416 (1996). ArticleCASPubMed Google Scholar
Sun, S.C., Lindstrom, I., Lee, J.Y. & Faye, I. Structure and expression of the attacin genes in Hyalophora cecropia. Eur. J. Biochem.196, 247–254 (1991). ArticleCASPubMed Google Scholar
Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. & Hoffmann, J.A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell86, 973–983 (1996). ArticleCASPubMed Google Scholar
Medzhitov, R., Preston-Hurlburt, P. & Janeway, C.A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature388, 394–397 (1997). ArticleCASPubMed Google Scholar
Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science282, 2085–2088 (1998). ArticleCASPubMed Google Scholar
Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell1, 503–514 (2001). ArticleCASPubMed Google Scholar
Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature416, 640–644 (2002). ArticleCASPubMed Google Scholar
Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R.A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature416, 644–648 (2002). ArticleCASPubMed Google Scholar
Steiner, H. Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunol. Rev.198, 83–96 (2004). ArticleCASPubMed Google Scholar
Athman, R. & Philpott, D. Innate immunity via Toll-like receptors and Nod proteins. Curr. Opin. Microbiol.7, 25–32 (2004). ArticleCASPubMed Google Scholar
Girardin, S.E. & Philpott, D.J. Mini-review: the role of peptidoglycan recognition in innate immunity. Eur. J. Immunol.34, 1777–1782 (2004). ArticleCASPubMed Google Scholar
Philpott, D.J. & Girardin, S.E. The role of Toll-like receptors and Nod proteins in bacterial infection. Mol. Immunol.41, 1099–1108 (2004). ArticleCASPubMed Google Scholar
Viala, J., Sansonetti, P. & Philpott, D.J. Nods and 'intracellular' innate immunity. C. R. Biol.327, 551–555 (2004). ArticleCASPubMed Google Scholar
Ting, J.P. & Davis, B.K. CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu. Rev. Immunol.23, 387–414 (2005). ArticleCASPubMed Google Scholar
Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol.4, 702–707 (2003). ArticleCASPubMed Google Scholar
Chamaillard, M., Girardin, S.E., Viala, J. & Philpott, D.J. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell. Microbiol.5, 581–592 (2003). ArticleCASPubMed Google Scholar
Girardin, S.E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem.278, 8869–8872 (2003). ArticleCASPubMed Google Scholar
Tschopp, J., Martinon, F. & Burns, K. NALPs: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol.4, 95–104 (2003). ArticleCASPubMed Google Scholar
Martinon, F., Agostini, L., Meylan, E. & Tschopp, J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol.14, 1929–1934 (2004). ArticleCASPubMed Google Scholar
Nurnberger, T., Brunner, F., Kemmerling, B. & Piater, L. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev.198, 249–266 (2004). ArticlePubMed Google Scholar
Asai, T. et al. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature415, 977–983 (2002). ArticleCASPubMed Google Scholar
Felix, G., Duran, J.D., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J.18, 265–276 (1999). ArticleCASPubMed Google Scholar
Gomez-Gomez, L. & Boller, T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell5, 1003–1011 (2000). ArticleCASPubMed Google Scholar
Gomez-Gomez, L., Felix, G. & Boller, T. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J.18, 277–284 (1999). ArticleCASPubMed Google Scholar
Meindl, T., Boller, T. & Felix, G. The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept. Plant Cell12, 1783–1794 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zipfel, C. et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature428, 764–767 (2004). ArticleCASPubMed Google Scholar
Gomez-Gomez, L. & Boller, T. Flagellin perception: a paradigm for innate immunity. Trends Plant Sci.7, 251–256 (2002). ArticleCASPubMed Google Scholar
Shiu, S.H. & Bleecker, A.B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA98, 10763–10768 (2001). ArticleCASPubMed Google Scholar
Shiu, S.H. & Bleecker, A.B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol.132, 530–543 (2003). ArticleCASPubMed Google Scholar
Donnelly, M.A. & Steiner, T.S. Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5. J. Biol. Chem.277, 40456–40461 (2002). ArticleCASPubMed Google Scholar
Holt, B.F., III, Hubert, D.A. & Dangl, J.L. Resistance gene signaling in plants–complex similarities to animal innate immunity. Curr. Opin. Immunol.15, 20–25 (2003). ArticleCASPubMed Google Scholar
Nimchuk, Z., Eulgem, T., Holt, B.F., III & Dangl, J.L. Recognition and response in the plant immune system. Annu. Rev. Genet.37, 579–609 (2003). ArticleCASPubMed Google Scholar
Meyers, B.C., Kozik, A., Griego, A., Kuang, H. & Michelmore, R.W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell15, 809–834 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zhou, T. et al. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol. Genet. Genomics271, 402–415 (2004). ArticleCASPubMed Google Scholar
Bais, H.P., Prithiviraj, B., Jha, A.K., Ausubel, F.M. & Vivanco, J.M. Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature434, 217–221 (2005). ArticleCASPubMed Google Scholar
Hauck, P., Thilmony, R. & He, S.Y. A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc. Natl. Acad. Sci. USA100, 8577–8582 (2003). ArticleCASPubMed Google Scholar
He, P. et al. Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant J.37, 589–602 (2004). ArticleCASPubMed Google Scholar
Hotson, A., Chosed, R., Shu, H., Orth, K. & Mudgett, M.B. Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol. Microbiol.50, 377–389 (2003). ArticleCASPubMed Google Scholar
Kim, M.G. et al. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell121, 749–759 (2005). ArticleCASPubMed Google Scholar
Orth, K. et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science290, 1594–1597 (2000). ArticleCASPubMed Google Scholar
Zhao, Y. et al. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J.36, 485–499 (2003). ArticleCASPubMed Google Scholar
Pujol, N. et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr. Biol.11, 809–821 (2001). ArticleCASPubMed Google Scholar
Mallo, G.V. et al. Inducible antibacterial defense system in C. elegans. Curr. Biol.12, 1209–1214 (2002). ArticleCASPubMed Google Scholar
Couillault, C. et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat. Immunol.5, 488–494 (2004). ArticleCASPubMed Google Scholar
Kim, D.H. et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science297, 623–626 (2002). ArticleCASPubMed Google Scholar
Kim, D.H. et al. Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Proc. Natl. Acad. Sci. USA101, 10990–10994 (2004). ArticleCASPubMed Google Scholar
Liberati, N.T. et al. Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc. Natl. Acad. Sci. USA101, 6593–6598 (2004). ArticleCASPubMed Google Scholar
Matsuzawa, A. et al. ROS-dependent activation of the TRAF6–ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat. Immunol.6, 587–592 (2005). ArticleCASPubMed Google Scholar
Mochida, Y. et al. ASK1 inhibits interleukin-1-induced NF-kappa B activity through disruption of TRAF6–TAK1 interaction. J. Biol. Chem.275, 32747–32752 (2000). ArticleCASPubMed Google Scholar
Glazebrook, J. Genes controlling expression of defense responses in _Arabidopsis_–2001 status. Curr. Opin. Plant Biol.4, 301–308 (2001). ArticleCASPubMed Google Scholar
Chern, M., Canlas, P.E., Fitzgerald, H.A. & Ronald, P.C. Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1. Plant J.43, 335–345 (2005). ArticleCASPubMed Google Scholar
Pieterse, C.M. & Van Loon, L.C. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol.7, 456–464 (2004). ArticleCASPubMed Google Scholar
Keller, T. et al. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell10, 255–266 (1998). CASPubMedPubMed Central Google Scholar
Torres, M.A. et al. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J.14, 365–370 (1998). ArticleCASPubMed Google Scholar
Torres, M.A., Dangl, J.L. & Jones, J.D. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA99, 517–522 (2002). ArticleCASPubMed Google Scholar
Song, W.Y. et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science270, 1804–1806 (1995). ArticleCASPubMed Google Scholar
Burdman, S., Shen, Y., Lee, S.W., Xue, Q. & Ronald, P. RaxH/RaxR: a two-component regulatory system in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity. Mol. Plant Microbe Interact.17, 602–612 (2004). ArticleCASPubMed Google Scholar
da Silva, F.G. et al. Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. Mol. Plant Microbe Interact.17, 593–601 (2004). ArticleCASPubMed Google Scholar
Shen, Y., Sharma, P., da Silva, F.G. & Ronald, P. The Xanthomonas oryzae pv. lozengeoryzae raxP and raxQ genes encode an ATP sulphurylase and adenosine-5′-phosphosulphate kinase that are required for AvrXa21 avirulence activity. Mol. Microbiol.44, 37–48 (2002). ArticleCASPubMed Google Scholar
Dangl, J.L. & Jones, J.D. Plant pathogens and integrated defence responses to infection. Nature411, 826–833 (2001). ArticleCASPubMed Google Scholar
Axtell, M.J. & Staskawicz, B.J. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell112, 369–377 (2003). ArticleCASPubMed Google Scholar
Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R. & Dangl, J.L. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell112, 379–389 (2003). ArticleCASPubMed Google Scholar
Mackey, D., Holt, B.F., Wiig, A. & Dangl, J.L. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell108, 743–754 (2002). ArticleCASPubMed Google Scholar
Friedman, R. & Hughes, A.L. Molecular evolution of the NF-κB signaling system. Immunogenetics53, 964–974 (2002). ArticleCASPubMed Google Scholar
Luo, C. & Zheng, L. Independent evolution of Toll and related genes in insects and mammals. Immunogenetics51, 92–98 (2000). ArticleCASPubMed Google Scholar
Pancer, Z. et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature430, 174–180 (2004). ArticleCASPubMed Google Scholar
Nurnberger, T. & Volker, L. Non-host resistance in plants: new insights into an old phenomenon. Mol. Plant Pathol.6, 335–345 (2005). ArticlePubMed Google Scholar
Meyerowitz, E.M. Plants compared to animals: the broadest comparative study of development. Science295, 1482–1485 (2002). ArticleCASPubMed Google Scholar
Diez, E. et al. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat. Genet.33, 55–60 (2003). ArticleCASPubMed Google Scholar
Wright, E.K. et al. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol.13, 27–36 (2003). ArticleCASPubMed Google Scholar
Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature427, 848–853 (2004). ArticleCASPubMed Google Scholar