The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9 (original) (raw)
Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science282, 2085–2088 (1998). ArticleCAS Google Scholar
Takeuchi, O. et al. Preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a Toll-Like receptor 2- and MyD88-dependent signaling pathway. J. Immunol.164, 554–557 (2000). ArticleCAS Google Scholar
Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol.13, 933–940 (2001). ArticleCAS Google Scholar
Gantner, B.N., Simmons, R.M., Canavera, S.J., Akira, S. & Underhill, D.M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med.197, 1107–1117 (2003). ArticleCAS Google Scholar
Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll- like receptor 5. Nature410, 1099–1103 (2001). ArticleCAS Google Scholar
Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature408, 740–745 (2000). ArticleCAS Google Scholar
Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature413, 732–738 (2001). ArticleCAS Google Scholar
Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science303, 1529–1531 (2004). ArticleCAS Google Scholar
Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science303, 1526–1529 (2004). ArticleCAS Google Scholar
Lund, J.M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA101, 5598–5603 (2004). ArticleCAS Google Scholar
Matsumoto, M. et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol.171, 3154–3162 (2003). ArticleCAS Google Scholar
Funami, K. et al. The cytoplasmic 'linker region' in Toll-like receptor 3 controls receptor localization and signaling. Int. Immunol.16, 1143–1154 (2004). ArticleCAS Google Scholar
Ahmad-Nejad, P. et al. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol.32, 1958–1968 (2002). ArticleCAS Google Scholar
Leifer, C.A. et al. TLR9 is localized in the endoplasmic reticulum prior to stimulation. J. Immunol.173, 1179–1183 (2004). ArticleCAS Google Scholar
Latz, E. et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol.5, 190–198 (2004). ArticleCAS Google Scholar
Heil, F. et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur. J. Immunol.33, 2987–2997 (2003). ArticleCAS Google Scholar
Beutler, B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature430, 257–263 (2004). ArticleCAS Google Scholar
Hoebe, K. et al. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat. Immunol.4, 1223–1229 (2003). ArticleCAS Google Scholar
Jenkins, M.K., Taylor, P.S., Norton, S.D. & Urdahl, K.B. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J. Immunol.147, 2461–2466 (1991). CASPubMed Google Scholar
Azuma, M., Cayabyab, M., Buck, D., Phillips, J.H. & Lanier, L.L. CD28 interaction with B7 costimulates primary allogeneic proliferative responses and cytotoxicity mediated by small, resting T lymphocytes. J. Exp. Med.175, 353–360 (1992). ArticleCAS Google Scholar
Chen, L. et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell71, 1093–1102 (1992). ArticleCAS Google Scholar
Borriello, F. et al. B7–1 and B7–2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity6, 303–313 (1997). ArticleCAS Google Scholar
Pamer, E. & Cresswell, P. Mechanisms of MHC class I–restricted antigen processing. Annu. Rev. Immunol.16, 323–358 (1998). ArticleCAS Google Scholar
Cresswell, P. Assembly, transport, and function of MHC class II molecules. Annu. Rev. Immunol.12, 259–293 (1994). ArticleCAS Google Scholar
Hoebe, K. et al. CD36 is a sensor of diacylglycerides. Nature433, 523–527 (2005). ArticleCAS Google Scholar
Jiang, Z. et al. CD14 is required for MyD88-independent LPS signaling. Nat. Immunol.6, 565–570 (2005). ArticleCAS Google Scholar
Tabeta, K. et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl. Acad. Sci. USA101, 3516–3521 (2004). ArticleCAS Google Scholar
Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signaling. Nature424, 743–748 (2003). ArticleCAS Google Scholar
Edelson, B.T. & Unanue, E.R. MyD88-dependent but Toll-like receptor 2-independent innate immunity to Listeria: no role for either in macrophage listericidal activity. J. Immunol.169, 3869–3875 (2002). ArticleCAS Google Scholar
McCaffrey, R.L. et al. A specific gene expression program triggered by Gram-positive bacteria in the cytosol. Proc. Natl. Acad. Sci. USA101, 11386–11391 (2004). ArticleCAS Google Scholar
Serbina, N.V. et al. Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity19, 891–901 (2003). ArticleCAS Google Scholar
Martinson, J.J., Chapman, N.H., Rees, D.C., Liu, Y.T. & Clegg, J.B. Global distribution of the CCR5 gene 32-basepair deletion. Nat. Genet.16, 100–103 (1997). ArticleCAS Google Scholar
Janssen, E.M. et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature434, 88–93 (2005). ArticleCAS Google Scholar
Sureau, A. et al. Characterization of multiple alternative RNAs resulting from antisense transcription of the PR264/SC35 splicing factor gene. Nucleic Acids Res.25, 4513–4522 (1997). ArticleCAS Google Scholar
Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function 3. Immunity21, 107–119 (2004). ArticleCAS Google Scholar
Greenwald, I.S. & Horvitz, H.R. unc-93(e1500): A behavioral mutant of Caenorhabditis elegans that defines a gene with a wild-type null phenotype. Genetics96, 147–164 (1980). CASPubMedPubMed Central Google Scholar
Levin, J.Z. & Horvitz, H.R. The Caenorhabditis elegans unc-93 gene encodes a putative transmembrane protein that regulates muscle contraction. J. Cell Biol.117, 143–155 (1992). ArticleCAS Google Scholar
de la Cruz, I., Levin, J.Z., Cummins, C., Anderson, P. & Horvitz, H.R. sup-9, sup-10, and unc-93 may encode components of a two-pore K+ channel that coordinates muscle contraction in Caenorhabditis elegans. J. Neurosci.23, 9133–9145 (2003). Article Google Scholar
Samson, M. et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature382, 722–725 (1996). ArticleCAS Google Scholar
MacFarlane, D.E. & Manzel, L. Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J. Immunol.160, 1122–1131 (1998). CASPubMed Google Scholar
Lee, J. et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl. Acad. Sci. USA100, 6646–6651 (2003). ArticleCAS Google Scholar
Hacker, H. et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J.17, 6230–6240 (1998). ArticleCAS Google Scholar
Manzel, L., Strekowski, L., Ismail, F.M., Smith, J.C. & MacFarlane, D.E. Antagonism of immunostimulatory CpG-oligodeoxynucleotides by 4-aminoquinolines and other weak bases: mechanistic studies. J. Pharmacol. Exp. Ther.291, 1337–1347 (1999). CASPubMed Google Scholar
de Bouteiller, O. et al. Recognition of double-stranded RNA by human toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH. J. Biol. Chem.280, 38133–38145 (2005). ArticleCAS Google Scholar
Beutler, B. The Toll-like receptors: analysis by forward genetic methods. Immunogenetics57, 385–392 (2005). ArticleCAS Google Scholar
Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol.4, 499–511 (2004). ArticleCAS Google Scholar
Leadbetter, E.A., Rifkin, I.R. & Marshak-Rothstein, A. Toll-like receptors and activation of autoreactive B cells. Curr. Dir. Autoimmun.6, 105–122 (2003). Article Google Scholar
Viglianti, G.A. et al. Activation of autoreactive B cells by CpG dsDNA. Immunity19, 837–847 (2003). ArticleCAS Google Scholar
Leadbetter, E.A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature416, 603–607 (2002). ArticleCAS Google Scholar
Hoebe, K., Du, X., Goode, J., Mann, N. & Beutler, B. Lps2: a new locus required for responses to lipopolysaccharide, revealed by germline mutagenesis and phenotypic screening. J. Endotoxin Res.9, 250–255 (2003). ArticleCAS Google Scholar
Orange, J.S. & Biron, C.A. Characterization of early IL-12, IFN-α/β, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J. Immunol.156, 4746–4756 (1996). CASPubMed Google Scholar
Jankowski, A., Scott, C.C. & Grinstein, S. Determinants of the phagosomal pH in neutrophils. J. Biol. Chem.277, 6059–6066 (2002). ArticleCAS Google Scholar
Schapiro, F.B. & Grinstein, S. Determinants of the pH of the Golgi complex. J. Biol. Chem.275, 21025–21032 (2000). ArticleCAS Google Scholar
Porgador, A., Yewdell, J.W., Deng, Y., Bennink, J.R. & Germain, R.N. Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity6, 715–726 (1997). ArticleCAS Google Scholar