Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block (original) (raw)
Logan, C.Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol.20, 781–810 (2004). ArticleCAS Google Scholar
Giles, R.H., van Es, J.H. & Clevers, H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta1653, 1–24 (2003). CASPubMed Google Scholar
Muller-Tidow, C. et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol. Cell. Biol.24, 2890–2904 (2004). Article Google Scholar
Lu, D. et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA101, 3118–3123 (2004). ArticleCAS Google Scholar
Bauer, A. et al. Pontin52 and reptin52 function as antagonistic regulators of β-catenin signalling activity. EMBO J.19, 6121–6130 (2000). ArticleCAS Google Scholar
Austin, T.W., Solar, G.P., Ziegler, F.C., Liem, L. & Matthews, W. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood89, 3624–3635 (1997). CASPubMed Google Scholar
Van Den Berg, D.J., Sharma, A.K., Bruno, E. & Hoffman, R. Role of members of the Wnt gene family in human hematopoiesis. Blood92, 3189–3202 (1998). CASPubMed Google Scholar
Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature423, 409–414 (2003). ArticleCAS Google Scholar
Duncan, A.W. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol.6, 314–322 (2005). ArticleCAS Google Scholar
Cobas, M. β-catenin is dispensable for hematopoiesis and lymphopoiesis. J. Exp. Med.199, 221–229 (2004). ArticleCAS Google Scholar
Reya, T., Okamura, R. & Grosschedl, R. Control of lymphocyte differentiation by the LEF-1/TCF family of transcription factors. Cold Spring Harb. Symp. Quant. Biol.64, 133–140 (1999). ArticleCAS Google Scholar
Okamura, R.M. et al. Redundant regulation of T cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity8, 11–20 (1998). ArticleCAS Google Scholar
Xu, Y., Banerjee, D., Huelsken, J., Birchmeier, W. & Sen, J.M. Deletion of β-catenin impairs T cell development. Nat. Immunol.4, 1177–1182 (2003). ArticleCAS Google Scholar
Gounari, F. et al. Somatic activation of β-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat. Immunol.2, 863–869 (2001). ArticleCAS Google Scholar
Ioannidis, V., Beermann, F., Clevers, H. & Held, W. The β-catenin–TCF-1 pathway ensures CD4+CD8+ thymocyte survival. Nat. Immunol.2, 691–697 (2001). ArticleCAS Google Scholar
Kolligs, F.T., Hu, G., Dang, C.V. & Fearon, E.R. Neoplastic transformation of RK3E by mutant β-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol. Cell. Biol.19, 5696–5706 (1999). ArticleCAS Google Scholar
Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity10, 547–558 (1999). ArticleCAS Google Scholar
Higuchi, M. et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell1, 63–74 (2002). ArticleCAS Google Scholar
Socolovsky, M. et al. Ineffective erythropoiesis in Stat5a−/−5b−/− mice due to decreased survival of early erythroblasts. Blood98, 3261–3273 (2001). ArticleCAS Google Scholar
Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature404, 193–197 (2000). ArticleCAS Google Scholar
Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell91, 661–672 (1997). ArticleCAS Google Scholar
Hardy, R.R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol.19, 595–621 (2001). ArticleCAS Google Scholar
Rickert, R.C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res.25, 1317–1318 (1997). ArticleCAS Google Scholar
Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nat. Immunol.4, 168–174 (2003). ArticleCAS Google Scholar
Lee, P.P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity15, 763–774 (2001). ArticleCAS Google Scholar
Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow Lin−Sca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity15, 659–669 (2001). ArticleCAS Google Scholar
Yang, L. et al. Identification of Lin−Sca1+c-kit+CD34+Flt3− short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood105, 2717–2723 (2005). ArticleCAS Google Scholar
Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell121, 295–306 (2005). ArticleCAS Google Scholar
Potocnik, A.J., Brakebusch, C. & Fassler, R. Fetal and adult hematopoietic stem cells require β1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity12, 653–663 (2000). ArticleCAS Google Scholar
Rekhtman, N., Radparvar, F., Evans, T. & Skoultchi, A.I. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev.13, 1398–1411 (1999). ArticleCAS Google Scholar
Nerlov, C. & Graf, T. P.U.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev.12, 2403–2412 (1998). ArticleCAS Google Scholar
Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science287, 1804–1808 (2000). ArticleCAS Google Scholar
Park, I.K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature423, 302–305 (2003). ArticleCAS Google Scholar
Antonchuk, J., Sauvageau, G. & Humphries, R.K. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell109, 39–45 (2002). ArticleCAS Google Scholar
Bouvard, D. et al. Functional consequences of integrin gene mutations in mice. Circ. Res.89, 211–223 (2001). ArticleCAS Google Scholar
Wagers, A.J. & Weissman, I.L. Differential expression of α2 integrin separates long-term and short-term reconstituting Lin−/loThy1.1loc-kit+Sca-1+ hematopoietic stem cells. Stem Cells4, 1087–1094 (2006). Article Google Scholar
Domen, J., Cheshier, S.H. & Weissman, I.L. The role of apoptosis in the regulation of hematopoietic stem cells: Overexpression of Bcl-2 increases both their number and repopulation potential. J. Exp. Med.191, 253–264 (2000). ArticleCAS Google Scholar
Trowbridge, J.J., Xenocostas, A., Moon, R.T. & Bhatia, M. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat. Med.12, 89–98 (2006). ArticleCAS Google Scholar
Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature423, 448–452 (2003). ArticleCAS Google Scholar
Zhang, P. et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc. Natl. Acad. Sci. USA96, 8705–8710 (1999). ArticleCAS Google Scholar
Nerlov, C., Querfurth, E., Kulessa, H. & Graf, T. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood95, 2543–2551 (2000). CAS Google Scholar
Nutt, S.L., Metcalf, D., D'Amico, A., Polli, M. & Wu, L. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J. Exp. Med.201, 221–231 (2005). ArticleCAS Google Scholar
Reya, T. et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity13, 15–24 (2000). ArticleCAS Google Scholar
Bhandoola, A. & Sambandam, A. From stem cell to T cell: one route or many? Nat. Rev. Immunol.6, 117–126 (2006). ArticleCAS Google Scholar
Rosenbauer, F. et al. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat. Genet.38, 27–37 (2006). ArticleCAS Google Scholar
Galceran, J., Farinas, I., Depew, M.J., Clevers, H. & Grosschedl, R. Wnt3a _−/−_–like phenotype and limb deficiency in Lef1−/−Tcf1−/− mice. Genes Dev.13, 709–717 (1999). ArticleCAS Google Scholar
Angrand, P.O., Daigle, N., van der Hoeven, F., Scholer, H.R. & Stewart, A.F. Simplified generation of targeting constructs using ET recombination. Nucleic Acids Res.27, e16 (1999). ArticleCAS Google Scholar
Awatramani, R., Soriano, P., Mai, J.J. & Dymecki, S. An Flp indicator mouse expressing alkaline phosphatase from the ROSA26 locus. Nat. Genet.29, 257–259 (2001). ArticleCAS Google Scholar
Porse, B.T. et al. E2F repression by C/EBPα is required for adipogenesis and granulopoiesis in vivo. Cell107, 247–258 (2001). ArticleCAS Google Scholar
Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of _lox_P-flanked gene segments including deletion in germ cells. Nucleic Acids Res.23, 5080–5081 (1995). ArticleCAS Google Scholar
Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science269, 1427–1429 (1995). ArticleCAS Google Scholar
Kennell, J.A., O'Leary, E.E., Gummow, B.M., Hammer, G.D. & MacDougald, O.A. T-cell factor 4N (TCF-4N), a novel isoform of mouse TCF-4, synergizes with β-catenin to coactivate C/EBPα and steroidogenic factor 1 transcription factors. Mol. Cell. Biol.23, 5366–5375 (2003). ArticleCAS Google Scholar
Bryder, D. et al. Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation. J. Exp. Med.194, 941–952 (2001). ArticleCAS Google Scholar
Hock, H. et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature431, 1002–1007 (2004). ArticleCAS Google Scholar
Porse, B.T. et al. Loss of C/EBPα cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage. J. Exp. Med.202, 85–96 (2005). ArticleCAS Google Scholar