- Orkin, S.H. Diversification of haematopoietic stem cells to specific lineages. Nat. Rev. Genet. 1, 57–64 (2000).
Article CAS Google Scholar
- Singh, H., Medina, K.L. & Pongubala, J.M. Contingent gene regulatory networks and B cell fate specification. Proc. Natl. Acad. Sci. USA 102, 4949–4953 (2005).
Article CAS Google Scholar
- Warren, L.A. & Rothenberg, E.V. Regulatory coding of lymphoid lineage choice by hematopoietic transcription factors. Curr. Opin. Immunol. 15, 166–175 (2003).
Article CAS Google Scholar
- Nutt, S.L. & Kee, B.L. The transcriptional regulation of B cell lineage commitment. Immunity 26, 715–725 (2007).
Article CAS Google Scholar
- Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).
Article CAS Google Scholar
- Lai, A.Y. & Kondo, M. Asymmetrical lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. J. Exp. Med. 203, 1867–1873 (2006).
Article CAS Google Scholar
- Yoshida, T., Ng, S.Y., Zuniga-Pflucker, J.C. & Georgopoulos, K. Early hematopoietic lineage restrictions directed by Ikaros. Nat. Immunol. 7, 382–391 (2006).
Article CAS Google Scholar
- Scott, E.W., Simon, M.C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).
Article CAS Google Scholar
- Zhang, D.E. et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice. Proc. Natl. Acad. Sci. USA 94, 569–574 (1997).
Article CAS Google Scholar
- Laslo, P. et al. Multilineage transcriptional primming and stabilization of alternate hematopoietic cell fates. Cell 126, 755–766 (2006).
Article CAS Google Scholar
- DeKoter, R.P., Lee, H.J. & Singh, H.P.U. 1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. Immunity 16, 297–309 (2002).
Article CAS Google Scholar
- Medina, K.L. et al. Assembling a gene regulatory network for specification of the B cell fate. Dev. Cell 7, 607–617 (2004).
Article CAS Google Scholar
- Lin, H. & Grosschedl, R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267 (1995).
Article CAS Google Scholar
- Zhuang, Y., Soriano, P. & Weintraub, H. The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884 (1994).
Article CAS Google Scholar
- Bain, G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892 (1994).
Article CAS Google Scholar
- Urbanek, P., Wang, Z.Q., Fetka, I., Wagner, E.F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994).
Article CAS Google Scholar
- Murre, C. Helix-loop-helix proteins and lymphocyte development. Nat. Immunol. 6, 1079–1086 (2005).
Article CAS Google Scholar
- Hagman, J., Belanger, C., Travis, A., Turck, C.W. & Grosschedl, R. Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression. Genes Dev. 7, 760–773 (1993).
Article CAS Google Scholar
- Engel, I. & Murre, C. The function of E- and Id proteins in lymphocyte development. Nat. Rev. Immunol. 1, 193–199 (2001).
Article CAS Google Scholar
- O'Riordan, M. & Grosschedl, R. Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 11, 21–31 (1999).
Article CAS Google Scholar
- Hesslein, D.G. et al. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev. 17, 37–42 (2003).
Article CAS Google Scholar
- Nutt, S.L., Urbanek, P., Rolink, A. & Busslinger, M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev. 11, 476–491 (1997).
Article CAS Google Scholar
- Nutt, S.L., Heavey, B., Rolink, A.G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).
Article CAS Google Scholar
- Rolink, A.G., Nutt, S.L., Melchers, F. & Busslinger, M. Long–term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature 401, 603–606 (1999).
Article CAS Google Scholar
- Mikkola, I., Heavey, B., Horcher, M. & Busslinger, M. Reversion of B cell commitment upon loss of Pax5 expression. Science 297, 110–113 (2002).
Article CAS Google Scholar
- Delogu, A. et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 24, 269–281 (2006).
Article CAS Google Scholar
- Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nat. Immunol. 8, 463–470 (2007).
Article CAS Google Scholar
- Dias, S., Silva, H., Jr., Cumano, A. & Vieira, P. Interleukin-7 is necessary to maintain the B cell potential in common lymphoid progenitors. J. Exp. Med. 201, 971–979 (2005).
Article CAS Google Scholar
- Kikuchi, K., Lai, A.Y., Hsu, C.L. & Kondo, M. IL-7 receptor signaling is necessary for stage transition in adult B cell development through up-regulation of EBF. J. Exp. Med. 201, 1197–1203 (2005).
Article CAS Google Scholar
- Seet, C.S., Brumbaugh, R.L. & Kee, B.L. Early B cell factor promotes B lymphopoiesis with reduced interleukin 7 responsiveness in the absence of E2A. J. Exp. Med. 199, 1689–1700 (2004).
Article CAS Google Scholar
- Maier, H. et al. Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nat. Immunol. 5, 1069–1077 (2004).
Article CAS Google Scholar
- Fuxa, M. & Busslinger, M. Reporter gene insertions reveal a strictly B lymphoid-specific expression pattern of Pax5 in support of its B cell identity function. J. Immunol. 178, 3031–3037 (2007).
Article CAS Google Scholar
- Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).
Article CAS Google Scholar
- Wiesmann, A. et al. Expression of CD27 on murine hematopoietic stem and progenitor cells. Immunity 12, 193–199 (2000).
Article CAS Google Scholar
- Medina, K.L. et al. Identification of very early lymphoid precursors in bone marrow and their regulation by estrogen. Nat. Immunol. 2, 718–724 (2001).
Article CAS Google Scholar
- Hagman, J. & Lukin, K. Early B-cell factor 'pioneers' the way for B-cell development. Trends Immunol. 26, 455–461 (2005).
Article CAS Google Scholar
- Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).
Article CAS Google Scholar
- DeKoter, R.P., Walsh, J.C. & Singh, H.P.U. 1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J. 17, 4456–4468 (1998).
Article CAS Google Scholar
- Walsh, J.C. et al. Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 17, 665–676 (2002).
Article CAS Google Scholar
- Nutt, S.L., Metcalf, D., D'Amico, A., Polli, M. & Wu, L. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J. Exp. Med. 201, 221–231 (2005).
Article CAS Google Scholar
- DeKoter, R.P. & Singh, H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288, 1439–1441 (2000).
Article CAS Google Scholar
- Zhang, Z., Cotta, C.V., Stephan, R.P., deGuzman, C.G. & Klug, C.A. Enforced expression of EBF in hematopoietic stem cells restricts lymphopoiesis to the B cell lineage. EMBO J. 22, 4759–4769 (2003).
Article CAS Google Scholar
- Rumfelt, L.L., Zhou, Y., Rowley, B.M., Shinton, S.A. & Hardy, R.R. Lineage specification and plasticity in CD19- early B cell precursors. J. Exp. Med. 203, 675–687 (2006).
Article CAS Google Scholar
- Chen, H. et al. PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene 11, 1549–1560 (1995).
CAS PubMed Google Scholar
- Schaniel, C., Bruno, L., Melchers, F. & Rolink, A.G. Multiple hematopoietic cell lineages develop in vivo from transplanted Pax5-deficient pre-B I-cell clones. Blood 99, 472–478 (2002).
Article CAS Google Scholar
- Ikawa, T., Kawamoto, H., Wright, L.Y. & Murre, C. Long-term cultured E2A-deficient hematopoietic progenitor cells are pluripotent. Immunity 20, 349–360 (2004).
Article CAS Google Scholar
- Mansson, R. et al. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity 26, 407–419 (2007).
Article Google Scholar
- Singh, H. Gene targeting reveals a hierarchy of transcription factors regulating specification of lymphoid cell fates. Curr. Opin. Immunol. 8, 160–165 (1996).
Article CAS Google Scholar
- Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004).
Article CAS Google Scholar
- Roessler, S. et al. Distinct promoters mediate the regulation of Ebf1 gene expression by interleukin-7 and Pax5. Mol. Cell. Biol. 27, 579–594 (2007).
Article CAS Google Scholar
- Lundgren, M. et al. Transcription factor dosage affects changes in higher order chromatin structure associated with activation of a heterochromatic gene. Cell 103, 733–743 (2000).
Article CAS Google Scholar
- Souabni, A., Cobaleda, C., Schebesta, M. & Busslinger, M. Pax5 promotes B lymphopoiesis and blocks T cell development by repressing Notch1. Immunity 17, 781–793 (2002).
Article CAS Google Scholar
- Sun, X.H. Constitutive expression of the Id1 gene impairs mouse B cell development. Cell 79, 893–900 (1994).
Article CAS Google Scholar
- Djuretic, I.M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat. Immunol. 8, 145–153 (2007).
Article CAS Google Scholar
- Singh, H. Shaping a helper T cell identity. Nat. Immunol. 8, 119–120 (2007).
Article CAS Google Scholar
- Maeda, T. et al. Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF. Science 316, 860–866 (2007).
Article CAS Google Scholar
- Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nat. Immunol. 4, 168–174 (2003).
Article CAS Google Scholar
- Schwarz, B.A. & Bhandoola, A. Circulating hematopoietic progenitors with T lineage potential. Nat. Immunol. 5, 953–960 (2004).
Article CAS Google Scholar
- Sitnicka, E. et al. Complementary signaling through flt3 and interleukin-7 receptor α is indispensable for fetal and adult B cell genesis. J. Exp. Med. 198, 1495–1506 (2003).
Article CAS Google Scholar
- Hardy, R.R., Carmack, C.E., Shinton, S.A., Kemp, J.D. & Hayakawa, K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–1225 (1991).
Article CAS Google Scholar
- Schlissel, M.S., Corcoran, L.M. & Baltimore, D. Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription. J. Exp. Med. 173, 711–720 (1991).
Article CAS Google Scholar
- Ehlich, A., Martin, V., Muller, W. & Rajewsky, K. Analysis of the B-cell progenitor compartment at the level of single cells. Curr. Biol. 4, 573–583 (1994).
Article CAS Google Scholar
- Corcoran, A.E., Riddell, A., Krooshoop, D. & Venkitaraman, A.R. Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor. Nature 391, 904–907 (1998).
Article CAS Google Scholar
- Li, C. & Wong, W.H. Model-based analysis of oligonucleotide arrays:model validation, design issues and standard error application. Genome Biology 2, 31.1–32.11 (2001).
Google Scholar
- Bertolino, E. et al. Regulation of interleukin 7–dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nat. Immunol. 6, 836–843 (2005).
Article CAS Google Scholar