NKT cells derive from double-positive thymocytes that are positively selected by CD1d (original) (raw)

References

  1. MacDonald, H. R. NK1.1+ T cell receptor-α/β+ cells: new clues to their origin, specificity, and function. J. Exp. Med. 182, 633–638 (1995).
    Article CAS PubMed Google Scholar
  2. Bendelac, A., Rivera, M. N., Park, S. H. & Roark, J. H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).
    Article CAS PubMed Google Scholar
  3. Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J. & Baxter, A. G. NKT cells: facts, functions and fallacies. Immunol. Today 21, 573–583 (2000).
    Article CAS PubMed Google Scholar
  4. Eberl, G. et al. Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. J. Immunol. 162, 6410–6419 (1999).
    CAS PubMed Google Scholar
  5. Hammond, K. J. et al. NKT cells are phenotypically and functionally diverse. Eur. J. Immunol. 29, 3768–3781 (1999).
    Article CAS PubMed Google Scholar
  6. Arase, H., Arase, N., Ogasawara, K., Good, R. A. & Onoe, K. An NK1.1+ CD4+8− single-positive thymocyte subpopulation that expresses a highly skewed T-cell antigen receptor Vβ family. Proc. Natl Acad. Sci. USA 89, 6506–6510 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  7. Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4−8− T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).
    Article CAS PubMed Google Scholar
  8. Makino, Y., Kanno, R., Ito, T., Higashino, K. & Taniguchi, M. Predominant expression of invariant Vα14+ TCRα chain in NK1.1+ T cell populations. Int. Immunol. 7, 1157–1161 (1995).
    Article CAS PubMed Google Scholar
  9. Ohteki, T. & MacDonald, H. R. Stringent Vβ requirement for the development of NK1.1+ T cell receptor-α/β+ cells in mouse liver. J. Exp. Med. 183, 1277–1282 (1996).
    Article CAS PubMed Google Scholar
  10. Shimamura, M., Ohteki, T., Beutner, U. & MacDonald, H. R. Lack of directed Vα14-Jα281 rearrangements in NK1+ T cells. Eur. J. Immunol. 27, 1576–1579 (1997).
    Article CAS PubMed Google Scholar
  11. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).
    Article CAS PubMed Google Scholar
  12. Burdin, N. et al. Selective ability of mouse CD1 to present glycolipids: α-galactosylceramide specifically stimulates Vα14+ NK T lymphocytes. J. Immunol. 161, 3271–3281 (1998).
    CAS PubMed Google Scholar
  13. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  14. Matsuda, J. L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  15. Cardell, S. et al. CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J. Exp. Med. 182, 993–1004 (1995).
    Article CAS PubMed Google Scholar
  16. Behar, S. M., Podrebarac, T. A., Roy, C. J., Wang, C. R. & Brenner, M. B. Diverse TCRs recognize murine CD1. J. Immunol. 162, 161–167 (1999).
    CAS PubMed Google Scholar
  17. Park, S.-H. et al. The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J. Exp. Med. 193, 893–904 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  18. Bix, M., Coles, M. & Raulet, D. Positive selection of Vβ8+ CD4−8− thymocytes by class I molecules expressed by hematopoietic cells. J. Exp. Med. 178, 901–908 (1993).
    Article CAS PubMed Google Scholar
  19. Coles, M. C. & Raulet, D. H. Class I dependence of the development of CD4+ CD8− NK1.1+ thymocytes. J. Exp. Med. 180, 395–399 (1994).
    Article CAS PubMed Google Scholar
  20. Bendelac, A., Killeen, N., Littman, D. R. & Schwartz, R. H. A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263, 1774–1778 (1994).
    Article CAS PubMed Google Scholar
  21. Ohteki, T. & MacDonald, H. R. Major histocompatibility complex class I related molecules control the development of CD4+8− and CD4−8− subsets of natural killer 1.1+ T cell receptor-α/β+ cells in the liver of mice. J. Exp. Med. 180, 699–704 (1994).
    Article CAS PubMed Google Scholar
  22. Coles, M. C. & Raulet, D. H. NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J. Immunol. 164, 2412–2418 (2000).
    Article CAS PubMed Google Scholar
  23. Alberola-Ila, J., Hogquist, K. A., Swan, K. A., Bevan, M. J. & Perlmutter, R. M. Positive and negative selection invoke distinct signaling pathways. J. Exp. Med. 184, 9–18 (1996).
    Article CAS PubMed Google Scholar
  24. Eberl, G., Lowin-Kropf, B. & MacDonald, H. R. Cutting edge: NKT cell development is selectively impaired in Fyn- deficient mice. J. Immunol. 163, 4091–4094 (1999).
    CAS PubMed Google Scholar
  25. Gadue, P., Morton, N. & Stein, P. L. The Src family tyrosine kinase Fyn regulates natural killer T cell development. J. Exp. Med. 190, 1189–1196 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  26. Walunas, T. L., Wang, B., Wang, C. R. & Leiden, J. M. Cutting edge: the Ets1 transcription factor is required for the development of NK T cells in mice. J. Immunol. 164, 2857–2860 (2000).
    Article CAS PubMed Google Scholar
  27. Ohteki, T., Ho, S., Suzuki, H., Mak, T. W. & Ohashi, P. S. Role for IL-15/IL-15 receptor β-chain in natural killer 1.1+ T cell receptor-αβ+ cell development. J. Immunol. 159, 5931–5935 (1997).
    CAS PubMed Google Scholar
  28. Iizuka, K. et al. Requirement for membrane lymphotoxin in natural killer cell development. Proc. Natl Acad. Sci. USA 96, 6336–6340 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  29. Elewaut, D. et al. Membrane lymphotoxin is required for the development of different subpopulations of NK T cells. J. Immunol. 165, 671–679 (2000).
    Article CAS PubMed Google Scholar
  30. Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature 360, 225–231 (1992).
    Article CAS PubMed Google Scholar
  31. Dudley, E. C., Petrie, H. T., Shah, L. M., Owen, M. J. & Hayday, A. C. T cell receptor β chain gene rearrangement and selection during thymocyte development in adult mice. Immunity 1, 83–93 (1994).
    Article CAS PubMed Google Scholar
  32. Fehling, H. J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature 375, 795–798 (1995).
    Article CAS PubMed Google Scholar
  33. MacDonald, H. R. CD1d-Glycolipid tetramers: A new tool to monitor natural killer T cells in health and disease. J. Exp. Med. 192, 15–19 (2000).
    Article Google Scholar
  34. MacDonald, H. R., Lees, R. K. & Held, W. Developmentally regulated extinction of Ly-49 receptor expression permits maturation and selection of NK1.1+ T cells. J. Exp. Med. 187, 2109–2114 (1998).
    Article CAS Google Scholar
  35. Page, D. M., Kane, L. P., Allison, J. P. & Hedrick, S. M. Two signals are required for negative selection of CD4+CD8+ thymocytes. J. Immunol. 151, 1868–1880 (1993).
    CAS PubMed Google Scholar
  36. Hogquist, K. A. et al. Identification of a naturally occurring ligand for thymic positive selection. Immunity 6, 389–399 (1997).
    Article CAS PubMed Google Scholar
  37. Sant'Angelo, D. B. et al. A molecular map of T cell development. Immunity 9, 179–186 (1998).
    Article CAS PubMed Google Scholar
  38. Lucas, B., Stefanova, I., Yasutomo, K., Dautigny, N. & Germain, R. N. Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity 10, 367–376 (1999).
    Article CAS PubMed Google Scholar
  39. Hogquist, K. A. Assays of thymic selection. Fetal thymus organ culture and in vitro thymocyte dulling assay. Meth. Mol. Biol. 156, 219–232 (2001).
    CAS Google Scholar
  40. McGargill, M. A., Derbinski, J. M. & Hogquist, K. A. Receptor editing in developing T cells. Nature Immunol. 1, 336–341 (2000).
    Article CAS Google Scholar
  41. Swat, W., Dessing, M., Baron, A., Kisielow, P. & von Boehmer, H. Phenotypic changes accompanying positive selection of CD4+CD8+ thymocytes. Eur. J. Immunol. 22, 2367–2372 (1992).
    Article CAS PubMed Google Scholar
  42. Apostolou, I. et al. Murine natural killer T (NKT) cells contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc. Natl Acad. Sci. USA 96, 5141–5146 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  43. Makino, Y. et al. Extrathymic development of Vα14+ T cells. J. Exp. Med. 177, 1399–1408 (1993).
    Article CAS PubMed Google Scholar
  44. Sato, K. et al. Evidence for extrathymic generation of intermediate T cell receptor cells in the liver revealed in thymectomized, irradiated mice subjected to bone marrow transplantation. J. Exp. Med. 182, 759–767 (1995).
    Article CAS PubMed Google Scholar
  45. Makino, Y., Kanno, R., Koseki, H. & Taniguchi, M. Development of Vα14+ NK T cells in the early stages of embryogenesis. Proc. Natl Acad. Sci. USA 93, 6516–6520 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  46. Shimizu, T. et al. The majority of lymphocytes in the bone marrow, thymus and extrathymic T cells in the liver are generated in situ from their own preexisting precursors. Microbiol. Immunol. 43, 595–608 (1999).
    Article CAS PubMed Google Scholar
  47. Shimamura, M., Ohteki, T., Launois, P., Garcia, A. M. & MacDonald, H. R. Thymus-independent generation of NK1+ T cells in vitro from fetal liver precursors. J. Immunol. 158, 3682–3689 (1997).
    CAS PubMed Google Scholar
  48. Tilloy, F., Di Santo, J. P., Bendelac, A. & Lantz, O. Thymic dependence of invariant Vα14+ natural killer-T cell development. Eur. J. Immunol. 29, 3313–3318 (1999).
    Article CAS PubMed Google Scholar
  49. Shores, E. W., Sharrow, S. O. & Singer, A. Presence of CD4 and CD8 determinants on CD4−CD8− murine thymocytes: passive acquisition of CD8 accessory molecules. Eur. J. Immunol. 21, 973–977 (1991).
    Article CAS PubMed Google Scholar
  50. Michie, A. M., Carlyle, J. R. & Zuniga-Pflucker, J. C. Early intrathymic precursor cells acquire a CD4low phenotype. J. Immunol. 160, 1735–1741 (1998).
    CAS PubMed Google Scholar
  51. Asarnow, D. M., Cado, D. & Raulet, D. H. Selection is not required to produce invariant T-cell receptor γ-gene junctional sequences. Nature 362, 158–160 (1993).
    Article CAS PubMed Google Scholar
  52. Baldwin, K. K., Trenchak, B. P., Altman, J. D. & Davis, M. M. Negative selection of T cells occurs throughout thymic development. J. Immunol. 163, 689–698 (1999).
    CAS PubMed Google Scholar
  53. Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182, 2091–2096 (1995).
    Article CAS PubMed Google Scholar
  54. Takahama, Y., Kosugi, A. & Singer, A. Phenotype, ontogeny, and repertoire of CD4−CD8− T cell receptor αβ+ thymocytes. Variable influence of self-antigens on T cell receptor Vβ usage. J. Immunol. 146, 1134–1141 (1991).
    CAS PubMed Google Scholar
  55. Wu, L., Pearse, M., Egerton, M., Petrie, H. & Scollay, R. CD4−CD8− thymocytes that express the T cell receptor may have previously expressed CD8. Int. Immunol. 2, 51–56 (1990).
    Article CAS PubMed Google Scholar
  56. Bendelac, A., Hunziker, R. D. & Lantz, O. Increased interleukin 4 and immunoglobulin E production in transgenic mice overexpressing NK1 T cells. J. Exp. Med. 184, 1285–1293 (1996).
    Article CAS PubMed Google Scholar
  57. Bruno, L., Fehling, H. J. & von Boehmer, H. The αβ T cell receptor can replace the γδ receptor in the development of γδ lineage cells. Immunity 5, 343–352 (1996).
    Article CAS PubMed Google Scholar
  58. Terrence, K., Pavlovich, C. P., Matechak, E. O. & Fowlkes, B. J. Premature expression of T cell receptor (TCR)αβ supresses TCRγδ gene rearrangement but permits development of γδ lineage T cells. J. Exp. Med. 192, 537–548 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  59. Curnow, S. J., Boyer, C., Buferne, M. & Schmitt-Verhulst, A. M. TCR-associated ζ-FcɛRIγ heterodimers on CD4−CD8− NK1.1+ T cells selected by specific class I MHC antigen. Immunity 3, 427–438 (1995).
    Article CAS PubMed Google Scholar
  60. Schulz, R. J., Parkes, A., Mizoguchi, E., Bhan, A. K. & Koyasu, S. Development of CD4−CD8− αβTCR+NK1.1+ T lymphocytes: thymic selection by self antigen. J. Immunol. 157, 4379–4389 (1996).
    CAS PubMed Google Scholar
  61. Iwabuchi, C. et al. Intrathymic selection of NK1.1+α/β T cell antigen receptor (TCR)+ cells in transgenic mice bearing TCR specific for chicken ovalbumin and restricted to I-Ad. Proc. Natl Acad. Sci. USA 95, 8199–8204 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  62. Legendre, V. et al. Selection of phenotypically distinct NK1.1+ T cells upon antigen expression in the thymus or in the liver. Eur. J. Immunol. 29, 2330–2343 (1999).
    Article CAS PubMed Google Scholar
  63. Sato, H. et al. Induction of differentiation of pre-NKT cells to mature Vα14 NKT cells by granulocyte/macrophage colony-stimulating factor. Proc. Natl Acad. Sci. USA 96, 7439–7444 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  64. Iwabuchi, K. et al. Defective development of NK1.1+ T-cell antigen receptor αβ+ cells in zeta-associated protein 70 null mice with an accumulation of NK1.1+ CD3− NK-like cells in the thymus. Blood 97, 1765–1775 (2001).
    Article CAS PubMed Google Scholar
  65. Lantz, O., Sharara, L. I., Tilloy, F., Andersson, A. & DiSanto, J. P. Lineage relationships and differentiation of natural killer (NK) T cells: intrathymic selection and interleukin (IL)-4 production in the absence of NKR-P1 and Ly49 molecules. J. Exp. Med. 185, 1395–1401 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  66. Amsen, D. & Kruisbeek, A. M. Thymocyte selection: not by TCR alone. Immunol. Rev. 165, 209–229 (1998).
    Article CAS PubMed Google Scholar
  67. Bendelac, A., Matzinger, P., Seder, R. A., Paul, W. E. & Schwartz, R. H. Activation events during thymic selection. J. Exp. Med. 175, 731–742 (1992).
    Article CAS PubMed Google Scholar
  68. Arase, H., Arase, N., Nakagawa, K., Good, R. A. & Onoe, K. NK1.1+ CD4+ CD8− thymocytes with specific lymphokine secretion. Eur. J. Immunol. 23, 307–310 (1993).
    Article CAS PubMed Google Scholar
  69. Leite-de-Moraes, M. C. et al. MHC class I-selected CD4−CD8−TCR-αβ+ T cells are a potential source of IL-4 during primary immune response. J. Immunol. 155, 4544–4550 (1995).
    CAS PubMed Google Scholar
  70. Chen, Y. H., Chiu, N. M., Mandal, M., Wang, N. & Wang, C. R. Impaired NK1+ T cell development and early IL-4 production in CD1- deficient mice. Immunity 6, 459–467 (1997).
    Article CAS PubMed Google Scholar
  71. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).
    Article CAS PubMed Google Scholar

Download references