NKT cells derive from double-positive thymocytes that are positively selected by CD1d (original) (raw)
References
MacDonald, H. R. NK1.1+ T cell receptor-α/β+ cells: new clues to their origin, specificity, and function. J. Exp. Med.182, 633–638 (1995). ArticleCASPubMed Google Scholar
Bendelac, A., Rivera, M. N., Park, S. H. & Roark, J. H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol.15, 535–562 (1997). ArticleCASPubMed Google Scholar
Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J. & Baxter, A. G. NKT cells: facts, functions and fallacies. Immunol. Today21, 573–583 (2000). ArticleCASPubMed Google Scholar
Eberl, G. et al. Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. J. Immunol.162, 6410–6419 (1999). CASPubMed Google Scholar
Hammond, K. J. et al. NKT cells are phenotypically and functionally diverse. Eur. J. Immunol.29, 3768–3781 (1999). ArticleCASPubMed Google Scholar
Arase, H., Arase, N., Ogasawara, K., Good, R. A. & Onoe, K. An NK1.1+ CD4+8− single-positive thymocyte subpopulation that expresses a highly skewed T-cell antigen receptor Vβ family. Proc. Natl Acad. Sci. USA89, 6506–6510 (1992). ArticleCASPubMedPubMed Central Google Scholar
Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4−8− T cells in mice and humans. J. Exp. Med.180, 1097–1106 (1994). ArticleCASPubMed Google Scholar
Makino, Y., Kanno, R., Ito, T., Higashino, K. & Taniguchi, M. Predominant expression of invariant Vα14+ TCRα chain in NK1.1+ T cell populations. Int. Immunol.7, 1157–1161 (1995). ArticleCASPubMed Google Scholar
Ohteki, T. & MacDonald, H. R. Stringent Vβ requirement for the development of NK1.1+ T cell receptor-α/β+ cells in mouse liver. J. Exp. Med.183, 1277–1282 (1996). ArticleCASPubMed Google Scholar
Shimamura, M., Ohteki, T., Beutner, U. & MacDonald, H. R. Lack of directed Vα14-Jα281 rearrangements in NK1+ T cells. Eur. J. Immunol.27, 1576–1579 (1997). ArticleCASPubMed Google Scholar
Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science278, 1626–1629 (1997). ArticleCASPubMed Google Scholar
Burdin, N. et al. Selective ability of mouse CD1 to present glycolipids: α-galactosylceramide specifically stimulates Vα14+ NK T lymphocytes. J. Immunol.161, 3271–3281 (1998). CASPubMed Google Scholar
Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med.191, 1895–1903 (2000). ArticleCASPubMedPubMed Central Google Scholar
Matsuda, J. L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med.192, 741–754 (2000). ArticleCASPubMedPubMed Central Google Scholar
Cardell, S. et al. CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J. Exp. Med.182, 993–1004 (1995). ArticleCASPubMed Google Scholar
Behar, S. M., Podrebarac, T. A., Roy, C. J., Wang, C. R. & Brenner, M. B. Diverse TCRs recognize murine CD1. J. Immunol.162, 161–167 (1999). CASPubMed Google Scholar
Park, S.-H. et al. The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J. Exp. Med.193, 893–904 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bix, M., Coles, M. & Raulet, D. Positive selection of Vβ8+ CD4−8− thymocytes by class I molecules expressed by hematopoietic cells. J. Exp. Med.178, 901–908 (1993). ArticleCASPubMed Google Scholar
Coles, M. C. & Raulet, D. H. Class I dependence of the development of CD4+ CD8− NK1.1+ thymocytes. J. Exp. Med.180, 395–399 (1994). ArticleCASPubMed Google Scholar
Bendelac, A., Killeen, N., Littman, D. R. & Schwartz, R. H. A subset of CD4+ thymocytes selected by MHC class I molecules. Science263, 1774–1778 (1994). ArticleCASPubMed Google Scholar
Ohteki, T. & MacDonald, H. R. Major histocompatibility complex class I related molecules control the development of CD4+8− and CD4−8− subsets of natural killer 1.1+ T cell receptor-α/β+ cells in the liver of mice. J. Exp. Med.180, 699–704 (1994). ArticleCASPubMed Google Scholar
Coles, M. C. & Raulet, D. H. NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J. Immunol.164, 2412–2418 (2000). ArticleCASPubMed Google Scholar
Alberola-Ila, J., Hogquist, K. A., Swan, K. A., Bevan, M. J. & Perlmutter, R. M. Positive and negative selection invoke distinct signaling pathways. J. Exp. Med.184, 9–18 (1996). ArticleCASPubMed Google Scholar
Eberl, G., Lowin-Kropf, B. & MacDonald, H. R. Cutting edge: NKT cell development is selectively impaired in Fyn- deficient mice. J. Immunol.163, 4091–4094 (1999). CASPubMed Google Scholar
Gadue, P., Morton, N. & Stein, P. L. The Src family tyrosine kinase Fyn regulates natural killer T cell development. J. Exp. Med.190, 1189–1196 (1999). ArticleCASPubMedPubMed Central Google Scholar
Walunas, T. L., Wang, B., Wang, C. R. & Leiden, J. M. Cutting edge: the Ets1 transcription factor is required for the development of NK T cells in mice. J. Immunol.164, 2857–2860 (2000). ArticleCASPubMed Google Scholar
Ohteki, T., Ho, S., Suzuki, H., Mak, T. W. & Ohashi, P. S. Role for IL-15/IL-15 receptor β-chain in natural killer 1.1+ T cell receptor-αβ+ cell development. J. Immunol.159, 5931–5935 (1997). CASPubMed Google Scholar
Iizuka, K. et al. Requirement for membrane lymphotoxin in natural killer cell development. Proc. Natl Acad. Sci. USA96, 6336–6340 (1999). ArticleCASPubMedPubMed Central Google Scholar
Elewaut, D. et al. Membrane lymphotoxin is required for the development of different subpopulations of NK T cells. J. Immunol.165, 671–679 (2000). ArticleCASPubMed Google Scholar
Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature360, 225–231 (1992). ArticleCASPubMed Google Scholar
Dudley, E. C., Petrie, H. T., Shah, L. M., Owen, M. J. & Hayday, A. C. T cell receptor β chain gene rearrangement and selection during thymocyte development in adult mice. Immunity1, 83–93 (1994). ArticleCASPubMed Google Scholar
Fehling, H. J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature375, 795–798 (1995). ArticleCASPubMed Google Scholar
MacDonald, H. R. CD1d-Glycolipid tetramers: A new tool to monitor natural killer T cells in health and disease. J. Exp. Med.192, 15–19 (2000). Article Google Scholar
MacDonald, H. R., Lees, R. K. & Held, W. Developmentally regulated extinction of Ly-49 receptor expression permits maturation and selection of NK1.1+ T cells. J. Exp. Med.187, 2109–2114 (1998). ArticleCAS Google Scholar
Page, D. M., Kane, L. P., Allison, J. P. & Hedrick, S. M. Two signals are required for negative selection of CD4+CD8+ thymocytes. J. Immunol.151, 1868–1880 (1993). CASPubMed Google Scholar
Hogquist, K. A. et al. Identification of a naturally occurring ligand for thymic positive selection. Immunity6, 389–399 (1997). ArticleCASPubMed Google Scholar
Lucas, B., Stefanova, I., Yasutomo, K., Dautigny, N. & Germain, R. N. Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity10, 367–376 (1999). ArticleCASPubMed Google Scholar
Hogquist, K. A. Assays of thymic selection. Fetal thymus organ culture and in vitro thymocyte dulling assay. Meth. Mol. Biol.156, 219–232 (2001). CAS Google Scholar
McGargill, M. A., Derbinski, J. M. & Hogquist, K. A. Receptor editing in developing T cells. Nature Immunol.1, 336–341 (2000). ArticleCAS Google Scholar
Swat, W., Dessing, M., Baron, A., Kisielow, P. & von Boehmer, H. Phenotypic changes accompanying positive selection of CD4+CD8+ thymocytes. Eur. J. Immunol.22, 2367–2372 (1992). ArticleCASPubMed Google Scholar
Apostolou, I. et al. Murine natural killer T (NKT) cells contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc. Natl Acad. Sci. USA96, 5141–5146 (1999). ArticleCASPubMedPubMed Central Google Scholar
Makino, Y. et al. Extrathymic development of Vα14+ T cells. J. Exp. Med.177, 1399–1408 (1993). ArticleCASPubMed Google Scholar
Sato, K. et al. Evidence for extrathymic generation of intermediate T cell receptor cells in the liver revealed in thymectomized, irradiated mice subjected to bone marrow transplantation. J. Exp. Med.182, 759–767 (1995). ArticleCASPubMed Google Scholar
Makino, Y., Kanno, R., Koseki, H. & Taniguchi, M. Development of Vα14+ NK T cells in the early stages of embryogenesis. Proc. Natl Acad. Sci. USA93, 6516–6520 (1996). ArticleCASPubMedPubMed Central Google Scholar
Shimizu, T. et al. The majority of lymphocytes in the bone marrow, thymus and extrathymic T cells in the liver are generated in situ from their own preexisting precursors. Microbiol. Immunol.43, 595–608 (1999). ArticleCASPubMed Google Scholar
Shimamura, M., Ohteki, T., Launois, P., Garcia, A. M. & MacDonald, H. R. Thymus-independent generation of NK1+ T cells in vitro from fetal liver precursors. J. Immunol.158, 3682–3689 (1997). CASPubMed Google Scholar
Tilloy, F., Di Santo, J. P., Bendelac, A. & Lantz, O. Thymic dependence of invariant Vα14+ natural killer-T cell development. Eur. J. Immunol.29, 3313–3318 (1999). ArticleCASPubMed Google Scholar
Shores, E. W., Sharrow, S. O. & Singer, A. Presence of CD4 and CD8 determinants on CD4−CD8− murine thymocytes: passive acquisition of CD8 accessory molecules. Eur. J. Immunol.21, 973–977 (1991). ArticleCASPubMed Google Scholar
Michie, A. M., Carlyle, J. R. & Zuniga-Pflucker, J. C. Early intrathymic precursor cells acquire a CD4low phenotype. J. Immunol.160, 1735–1741 (1998). CASPubMed Google Scholar
Asarnow, D. M., Cado, D. & Raulet, D. H. Selection is not required to produce invariant T-cell receptor γ-gene junctional sequences. Nature362, 158–160 (1993). ArticleCASPubMed Google Scholar
Baldwin, K. K., Trenchak, B. P., Altman, J. D. & Davis, M. M. Negative selection of T cells occurs throughout thymic development. J. Immunol.163, 689–698 (1999). CASPubMed Google Scholar
Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med.182, 2091–2096 (1995). ArticleCASPubMed Google Scholar
Takahama, Y., Kosugi, A. & Singer, A. Phenotype, ontogeny, and repertoire of CD4−CD8− T cell receptor αβ+ thymocytes. Variable influence of self-antigens on T cell receptor Vβ usage. J. Immunol.146, 1134–1141 (1991). CASPubMed Google Scholar
Wu, L., Pearse, M., Egerton, M., Petrie, H. & Scollay, R. CD4−CD8− thymocytes that express the T cell receptor may have previously expressed CD8. Int. Immunol.2, 51–56 (1990). ArticleCASPubMed Google Scholar
Bendelac, A., Hunziker, R. D. & Lantz, O. Increased interleukin 4 and immunoglobulin E production in transgenic mice overexpressing NK1 T cells. J. Exp. Med.184, 1285–1293 (1996). ArticleCASPubMed Google Scholar
Bruno, L., Fehling, H. J. & von Boehmer, H. The αβ T cell receptor can replace the γδ receptor in the development of γδ lineage cells. Immunity5, 343–352 (1996). ArticleCASPubMed Google Scholar
Terrence, K., Pavlovich, C. P., Matechak, E. O. & Fowlkes, B. J. Premature expression of T cell receptor (TCR)αβ supresses TCRγδ gene rearrangement but permits development of γδ lineage T cells. J. Exp. Med.192, 537–548 (2000). ArticleCASPubMedPubMed Central Google Scholar
Curnow, S. J., Boyer, C., Buferne, M. & Schmitt-Verhulst, A. M. TCR-associated ζ-FcɛRIγ heterodimers on CD4−CD8− NK1.1+ T cells selected by specific class I MHC antigen. Immunity3, 427–438 (1995). ArticleCASPubMed Google Scholar
Schulz, R. J., Parkes, A., Mizoguchi, E., Bhan, A. K. & Koyasu, S. Development of CD4−CD8− αβTCR+NK1.1+ T lymphocytes: thymic selection by self antigen. J. Immunol.157, 4379–4389 (1996). CASPubMed Google Scholar
Iwabuchi, C. et al. Intrathymic selection of NK1.1+α/β T cell antigen receptor (TCR)+ cells in transgenic mice bearing TCR specific for chicken ovalbumin and restricted to I-Ad. Proc. Natl Acad. Sci. USA95, 8199–8204 (1998). ArticleCASPubMedPubMed Central Google Scholar
Legendre, V. et al. Selection of phenotypically distinct NK1.1+ T cells upon antigen expression in the thymus or in the liver. Eur. J. Immunol.29, 2330–2343 (1999). ArticleCASPubMed Google Scholar
Sato, H. et al. Induction of differentiation of pre-NKT cells to mature Vα14 NKT cells by granulocyte/macrophage colony-stimulating factor. Proc. Natl Acad. Sci. USA96, 7439–7444 (1999). ArticleCASPubMedPubMed Central Google Scholar
Iwabuchi, K. et al. Defective development of NK1.1+ T-cell antigen receptor αβ+ cells in zeta-associated protein 70 null mice with an accumulation of NK1.1+ CD3− NK-like cells in the thymus. Blood97, 1765–1775 (2001). ArticleCASPubMed Google Scholar
Lantz, O., Sharara, L. I., Tilloy, F., Andersson, A. & DiSanto, J. P. Lineage relationships and differentiation of natural killer (NK) T cells: intrathymic selection and interleukin (IL)-4 production in the absence of NKR-P1 and Ly49 molecules. J. Exp. Med.185, 1395–1401 (1997). ArticleCASPubMedPubMed Central Google Scholar
Amsen, D. & Kruisbeek, A. M. Thymocyte selection: not by TCR alone. Immunol. Rev.165, 209–229 (1998). ArticleCASPubMed Google Scholar
Bendelac, A., Matzinger, P., Seder, R. A., Paul, W. E. & Schwartz, R. H. Activation events during thymic selection. J. Exp. Med.175, 731–742 (1992). ArticleCASPubMed Google Scholar
Arase, H., Arase, N., Nakagawa, K., Good, R. A. & Onoe, K. NK1.1+ CD4+ CD8− thymocytes with specific lymphokine secretion. Eur. J. Immunol.23, 307–310 (1993). ArticleCASPubMed Google Scholar
Leite-de-Moraes, M. C. et al. MHC class I-selected CD4−CD8−TCR-αβ+ T cells are a potential source of IL-4 during primary immune response. J. Immunol.155, 4544–4550 (1995). CASPubMed Google Scholar
Chen, Y. H., Chiu, N. M., Mandal, M., Wang, N. & Wang, C. R. Impaired NK1+ T cell development and early IL-4 production in CD1- deficient mice. Immunity6, 459–467 (1997). ArticleCASPubMed Google Scholar
Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science278, 1623–1626 (1997). ArticleCASPubMed Google Scholar