In vivo developmental stages in murine natural killer cell maturation (original) (raw)
Raulet, D.H., Vance, R.E. & McMahon, C.W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol.19, 291–330 (2001). ArticleCASPubMed Google Scholar
Lanier, L.L. Face off-the interplay between activating and inhibitory immune receptors. Curr. Opin. Immunol.13, 326–331 (2001). ArticleCASPubMed Google Scholar
Williams, N.S. et al. Natural killer cell differentiation: insights from knockout and transgenic mouse models and in vitro systems. Immunol. Rev.165, 47–61 (1998). ArticleCASPubMed Google Scholar
Carlyle, J.R. et al. Identification of a novel developmental stage marking lineage commitment of progenitor thymocytes. J. Exp. Med.186, 173–182 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ikawa, T., Kawamoto, H., Fujimoto, S. & Katsura, Y. Commitment of common T/Natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J. Exp. Med.190, 1617–1626 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rosmaraki, E.E. et al. Identification of committed NK cell progenitors in adult murine bone marrow. Eur. J. Immunol.31, 1900–1909 (2001). ArticleCASPubMed Google Scholar
Suzuki, H., Duncan, G.S., Takimoto, H. & Mak, T.W. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor β chain. J. Exp. Med.185, 499–505 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lodolce, J.P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity9, 669–676 (1998). ArticleCASPubMed Google Scholar
Kennedy, M.K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med.191, 771–780 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kim, S., Iizuka, K., Aguila, H.L., Weissman, I.L. & Yokoyama, W.M. In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc. Natl. Acad. Sci. USA97, 2731–2736 (2000). ArticleCASPubMedPubMed Central Google Scholar
Williams, N.S. et al. Generation of lytic natural killer 1.1+, Ly-49− cells from multipotential murine bone marrow progenitors in a stroma-free culture: definition of cytokine requirements and developmental intermediates. J. Exp. Med.186, 1609–1614 (1997). ArticleCASPubMedPubMed Central Google Scholar
Williams, N.S., Kubota, A., Bennett, M., Kumar, V. & Takei, F. Clonal analysis of NK cell development from bone marrow progenitors in vitro: orderly acquisition of receptor gene expression. Eur. J. Immunol.30, 2074–2082 (2000). ArticleCASPubMed Google Scholar
Arase, H., Saito, T., Phillips, J.H. & Lanier, L.L. Cutting edge: the mouse NK cell-associated antigen recognized by DX5 monoclonal antibody is CD49b (α2 integrin, very late antigen-2). J. Immunol.167, 1141–1144 (2001). ArticleCASPubMed Google Scholar
Sivakumar, P.V. et al. Cutting edge: expression of functional CD94-NKG2A inhibitory receptors on fetal NK1.1+Ly-49− cells: a possible mechanism of tolerance during NK cell development. J. Immunol.162, 6976–6980 (1999). CASPubMed Google Scholar
Salcedo, M. et al. Role of Qa-1(b)-binding receptors in the specificity of developing NK cells. Eur. J. Immunol.30, 1094–1101 (2000). ArticleCASPubMed Google Scholar
Dorfman, J.R. & Raulet, D.H. Acquisition of Ly49 receptor expression by developing natural killer cells. J. Exp. Med.187, 609–618 (1998). ArticleCASPubMedPubMed Central Google Scholar
Smith, H.R. et al. Nonstochastic coexpression of activation receptors on murine natural killer cells. J. Exp. Med.191, 1341–1354 (2000). ArticleCASPubMedPubMed Central Google Scholar
Roth, C., Carlyle, J.R., Takizawa, H. & Raulet, D.H. Clonal acquisition of inhibitory Ly49 receptors on developing NK cells is successively restricted and regulated by stromal class I MHC. Immunity13, 143–153 (2000). ArticleCASPubMed Google Scholar
Raulet, D.H. et al. Specificity, tolerance and developmental regulation of natural killer cells defined by expression of class I-specific Ly49 receptors. Immunol. Rev.155, 41–52 (1997). ArticleCASPubMed Google Scholar
Dokun, A.O. et al. Specific and nonspecific NK cell activation during virus infection. Nature Immunol.2, 951–956 (2001). ArticleCAS Google Scholar
Lanier, L.L., Phillips, J.H., Hackett, J. Jr., Tutt, M. & Kumar, V. Natural killer cells: definition of a cell type rather than a function. J. Immunol.137, 2735–2739 (1986). CASPubMed Google Scholar
Arroyo, A.G., Yang, J.T., Rayburn, H. & Hynes, R.O. α4 integrins regulate the proliferation/differentiation balance of multilineage hematopoietic progenitors in vivo. Immunity11, 555–566 (1999). ArticleCASPubMed Google Scholar
Shimizu, Y., Rose, D.M. & Ginsberg, M.H. Integrins in the immune system. Adv. Immunol.72, 325–380 (1999). ArticleCASPubMed Google Scholar
Schmeissner, P.J., Xie, H., Smilenov, L.B., Shu, F. & Marcantonio, E.E. Integrin functions play a key role in the differentiation of thymocytes in vivo. J. Immunol.167, 3715–3724 (2001). ArticleCASPubMed Google Scholar
Sato, H. et al. Induction of differentiation of pre-NKT cells to mature Vα14 NKT cells by granulocyte/macrophage colony-stimulating factor. Proc. Natl. Acad. Sci. USA96, 7439–7444 (1999). ArticleCASPubMedPubMed Central Google Scholar
Brown, M.G. et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science292, 934–937 (2001). ArticleCASPubMed Google Scholar
Lee, S.H. et al. Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nature Genet.28, 42–45 (2001). CASPubMed Google Scholar
Daniels, K.A. et al. Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49h. J. Exp. Med.194, 29–44 (2001). ArticleCASPubMedPubMed Central Google Scholar
Biron, C.A., Turgiss, L.R. & Welsh, R.M. Increase in NK cell number and turnover rate during acute viral infection. J. Immunol.131, 1539–1545 (1983). CASPubMed Google Scholar
Welsh, R.M., Brubaker, J.O., Vargas-Cortes, M. & O'Donnell, C.L. Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function. J. Exp. Med.173, 1053–1063 (1991). ArticleCASPubMed Google Scholar
Loza, M.J. & Perussia, B. Final steps of natural killer cell maturation: a model for type 1-type 2 differentiation? Nature Immunol.2, 917–924 (2001). ArticleCAS Google Scholar
Loza, M.J., Zamai, L., Azzoni, L., Rosati, E. & Perussia, B. Expression of type 1 (interferon γ) and type 2 (interleukin-13, interleukin-5) cytokines at distinct stages of natural killer cell differentiation from progenitor cells. Blood99, 1273–1281 (2002). ArticleCASPubMed Google Scholar
Zamai, L. et al. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J. Exp. Med.188, 2375–2380 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hackett, J. Jr., et al. Origin and differentiation of natural killer cells. II. Functional and morphologic studies of purified NK-1.1+ cells. J. Immunol.136, 3124–3131 (1986). PubMed Google Scholar
Puzanov, I.J., Bennett, M. & Kumar, V. IL-15 can substitute for the marrow microenvironment in the differentiation of natural killer cells. J. Immunol.157, 4282–4285 (1996). CASPubMed Google Scholar
Williams, N.S. et al. Differentiation of NK1.1+, Ly49+ NK cells from flt3+ multipotent marrow progenitor cells. J. Immunol.163, 2648–2656 (1999). CASPubMed Google Scholar
Iizuka, K. et al. Requirement for membrane lymphotoxin in natural killer cell development. Proc. Natl. Acad. Sci. USA96, 6336–6340 (1999). ArticleCASPubMedPubMed Central Google Scholar
Idris, A.H. et al. The natural killer cell complex genetic locus, Chok, encodes Ly49D, a target recognition receptor that activates natural killing. Proc. Natl. Acad. Sci. USA96, 6330–6335 (1999). ArticleCASPubMedPubMed Central Google Scholar
Mason, L.H. et al. Cloning and functional characteristics of murine large granular lymphocyte-1: a member of the Ly-49 gene family (Ly-49G2). J. Exp. Med.182, 293–303 (1995). ArticleCASPubMed Google Scholar