Essential role of MD-2 in LPS responsiveness and TLR4 distribution (original) (raw)
Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol.20, 197–216 (2002). ArticleCASPubMed Google Scholar
Aderem, A. & Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature406, 782–787 (2000). ArticleCASPubMed Google Scholar
Fearon, D.T. & Locksley, R.M. The instructive role of innate immunity in the acquired immune response. Science272, 50–53 (1996). ArticleCASPubMed Google Scholar
Ulevitch, R.J. & Tobias, P.S. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol.13, 437–457 (1995). ArticleCASPubMed Google Scholar
Haziot, A., Lin, X.Y., Zhang, F. & Goyert, S.M. The induction of acute phase proteins by lipopolysaccharide uses a novel pathway that is CD14-independent. J. Immunol.160, 2570–2572 (1998). CASPubMed Google Scholar
Medzhitov, R., Preston-Hurlburt, P. & Janeway, C.A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature388, 394–397 (1997). ArticleCASPubMed Google Scholar
Rock, F.L., Hardiman, G., Timans, J.C., Kastelein, R.A. & Bazan, J.F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA95, 588–593 (1998). ArticleCASPubMedPubMed Central Google Scholar
Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science282, 2085–2088 (1998). ArticleCASPubMed Google Scholar
Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the LPS gene product. J. Immunol.162, 3749–3752 (1999). CASPubMed Google Scholar
Miyake, K., Yamashita, Y., Hitoshi, Y., Takatsu, K. & Kimoto, M. Murine B cell proliferation and protection from apoptosis with an antibody against a 105-kD molecule: unresponsiveness of X-linked immunodeficient B cells. J. Exp. Med.180, 1217–1224 (1994). ArticleCASPubMed Google Scholar
Chan, V.W.F. et al. The molecular mechanism of B cell activation by Toll-like receptor protein RP-105. J. Exp. Med.188, 93–101 (1998). ArticleCASPubMedPubMed Central Google Scholar
Miura, Y. et al. RP105 is associated with MD-1 and transmits an activation signal in human B cells. Blood92, 2815–2822 (1998). CASPubMed Google Scholar
Miyake, K., Yamashita, Y., Ogata, M., Sudo, T. & Kimoto, M. RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family. J. Immunol.154, 3333–3340 (1995). CASPubMed Google Scholar
Miyake, K. et al. Mouse MD-1, a molecule that is physically associated with RP105 and positively regulates its expression. J. Immunol.161, 1348–1353 (1998). CASPubMed Google Scholar
Nagai, Y. et al. Requirement for MD-1 in cell surface expression of RP105/CD180 and B-cell responsiveness to lipopolysaccharide. Blood99, 1699–1705 (2002). ArticleCASPubMed Google Scholar
Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4 J. Exp. Med.189, 1777–1782 (1999). ArticleCASPubMedPubMed Central Google Scholar
da Silva Correia, J. & Ulevitch, R.J. MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor. J. Biol. Chem.277, 1845–1854 (2002). ArticlePubMed Google Scholar
Ohnishi, T., Muroi, M. & Tanamoto, K.-I. N-Linked glycosylations at Asn26 and Asn114 of human MD-2 Are required for Toll-like receptor 4-mediated activation of NF-κB by lipopolysaccharide. J. Immunol.167, 3354–3359 (2001). ArticleCASPubMed Google Scholar
Schromm, A.B. et al. Molecular genetic analysis of an endotoxin nonresponder mutant cell line: a point mutation in a conserved region of MD-2 abolishes endotoxin-induced signaling. J. Exp. Med.194, 79–88 (2001). ArticleCASPubMedPubMed Central Google Scholar
Visintin, A., Mazzoni, A., Spitzer, J.A. & Segal, D.M. Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. Proc. Natl. Acad. Sci. USA98, 12156–12161 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yang, H., Young, D.W., Gusovsky, F. & Chow, J.C. Cellular events mediated by lipopolysaccharide-stimulated toll-like receptor 4. MD-2 is required for activation of mitogen-activated protein kinases and Elk-1. J. Biol. Chem.275, 20861–20866 (2000). ArticleCASPubMed Google Scholar
Viriyakosol, S., Tobias, P.S., Kitchens, R.L. & Kirkland, T.N. MD-2 binds to bacterial lipopolysaccharide. J. Biol. Chem.276, 38044–38051 (2001). CASPubMed Google Scholar
Akashi, S. et al. Cutting edge: Cell surface expression and lipopolysaccharide signaling via the Toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J. Immunol.164, 3471–3475 (2000). ArticleCASPubMed Google Scholar
Kato, K., Morrison, A.M., Nakano, T., Tashiro, K. & Honjo, T. ESOP-1, a secreted protein expressed in the hematopoietic, nervous, and reproductive systems of embryonic and adult mice. Blood96, 362–364 (2000). CASPubMed Google Scholar
Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity11, 443–451 (1999). ArticleCASPubMed Google Scholar
Bernheiden, M. et al. LBP, CD14, TLR4 and the murine innate immune response to a peritoneal Salmonella infection. J. Endotoxin Res.7, 447–450 (2001). ArticleCASPubMed Google Scholar
Cole, L., Davies, D., Hyde, G.J. & Ashford, A.E. ER-Tracker dye and BODIPY-brefeldin A differentiate the endoplasmic reticulum and Golgi bodies from the tubular-vacuole system in living hyphae of Pisolithus tinctorius. J. Microsc.197, 239–249 (2000). ArticleCASPubMed Google Scholar
Randow, F. & Seed, B. Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nature Cell Biol.3, 891–896 (2001). ArticleCASPubMed Google Scholar
Hornef, M.W., Frisan, T., Vandewalle, A., Normark, S. & Richter-Dahlfors, A. Receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J. Exp. Med.195, 559–570 (2002). ArticleCASPubMedPubMed Central Google Scholar
Underhill, D.M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature401, 811–815 (1999). ArticleCASPubMed Google Scholar
Kawasaki, K. et al. Mouse Toll-like receptor 4.MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by taxol. J. Biol. Chem.275, 2251–2254 (2000). ArticleCASPubMed Google Scholar
Kawasaki, K., Gomi, K. & Nishijima, M. Cutting edge: Gln22 of mouse MD-2 is essential for species-specific lipopolysaccharide mimetic action of Taxol. J. Immunol.166, 11–14 (2001). ArticleCASPubMed Google Scholar
Akashi, S. et al. Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int. Immunol.13, 1595–1599 (2001). ArticleCASPubMed Google Scholar
Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S. & Beutler, B. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc. Natl. Acad. Sci. USA97, 2163–2167 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lien, E. et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest.105, 497–504 (2000). ArticleCASPubMedPubMed Central Google Scholar
Yagi, T. et al. A novel negative selection for homologous recombinants using diphtheria toxin A fragment gene. Ann. Biochem.214, 77–86 (1993). ArticleCAS Google Scholar
Niwa, H., Miyazaki, J. & Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet.24, 372–376 (2000). ArticleCASPubMed Google Scholar
Ogata, H. et al. The Toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J. Exp. Med.192, 23–30 (2000). ArticleCASPubMedPubMed Central Google Scholar
Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med.176, 1693–1702 (1992). ArticleCASPubMed Google Scholar
Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther.7, 1063–1066 (2000). ArticleCASPubMed Google Scholar