Morgan, M.D., Harper, L., Williams, J. & Savage, C. Anti-neutrophil cytoplasm associated glomerulonephritis. J. Am. Soc. Nephrol.17, 1224–1234 (2006). ArticlePubMedCAS Google Scholar
Davies, D.J., Moran, J.E., Niall, J.F. & Ryan, G.B. Segmental necrotizing glomerulonephritis with antineutrophil antibody: possible arbovirus aetiology? Br. Med. J. (Clin. Res. Ed.)285, 606 (1982). ArticleCAS Google Scholar
van der Woude, F.J. et al. Autoantibodies against neutrophils and monocytes: tool for diagnosis and marker of disease activity in Wegener's granulomatosis. Lancet1, 425–429 (1985). ArticlePubMedCAS Google Scholar
Jennette, J.C., Xiao, H. & Falk, R.J. Pathogenesis of vascular inflammation by anti-neutrophil cytoplasmic antibodies. J. Am. Soc. Nephrol.17, 1235–1242 (2006). ArticlePubMed Google Scholar
Xiao, H. et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J. Clin. Invest.110, 955–963 (2002). ArticlePubMedPubMed CentralCAS Google Scholar
Huugen, D. et al. Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-α. Am. J. Pathol.167, 47–58 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Pfister, H. et al. Antineutrophil cytoplasmic autoantibodies against the murine homolog of proteinase 3 (Wegener autoantigen) are pathogenic in vivo. Blood104, 1411–1418 (2004). ArticlePubMedCAS Google Scholar
van der Geld, Y.M. et al. Rats and mice immunised with chimeric human/mouse proteinase 3 produce autoantibodies to mouse PR3 and rat granulocytes. Ann. Rheum. Dis.66, 1679–1682 (2007). ArticlePubMedPubMed Central Google Scholar
Kain, R. et al. A novel class of autoantigens of anti-neutrophil cytoplasmic antibodies (ANCA) in necrotizing and crescentic glomerulonephritis. J. Exp. Med.181, 585–597 (1995). ArticlePubMedCAS Google Scholar
Carlsson, S.R., Roth, J., Piller, F. & Fukuda, M. Isolation and characterization of human lysosomal membrane glycoproteins, h-LAMP-1 and h-LAMP-2. Major sialoglycoproteins carrying polylactosaminoglycan. J. Biol. Chem.263, 18911–18919 (1988). PubMedCAS Google Scholar
Eskelinen, E.L. et al. Unifying nomenclature for the isoforms of the lysosomal membrane protein LAMP-2. Traffic6, 1058–1061 (2005). ArticlePubMedCAS Google Scholar
Sawada, R., Lowe, J.B. & Fukuda, M. E-selectin–dependent adhesion efficiency of colonic carcinoma cells is increased by genetic manipulation of their cell surface lysosomal membrane glycoprotein-1 expression levels. J. Biol. Chem.268, 12675–12681 (1993). PubMedCAS Google Scholar
Zhou, D. et al. Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity22, 571–581 (2005). ArticlePubMedCAS Google Scholar
Gough, N.R. & Fambrough, D.M. Different steady state subcellular distributions of the three splice variants of lysosome-associated membrane protein LAMP-2 are determined largely by the COOH-terminal amino acid residue. J. Cell Biol.137, 1161–1169 (1997). ArticlePubMedPubMed CentralCAS Google Scholar
Wegener, F. Über generalisierte septische Gefäßerkrankungen. Verh. Dtsch. Pathol. Ges.29, 202–209 (1936). Google Scholar
Stegeman, C.A., Tervaert, J.W., de Jong, P.E. & Kallenberg, C.G. Trimethoprim sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener's granulomatosis. Dutch Co-Trimoxazole Wegener Study Group. N. Engl. J. Med.335, 16–20 (1996). ArticlePubMedCAS Google Scholar
Fourneau, J.M., Bach, J.M., van Endert, P.M. & Bach, J.F. The elusive case for a role of mimicry in autoimmune diseases. Mol. Immunol.40, 1095–1102 (2004). ArticlePubMedCAS Google Scholar
Pendergraft, W.F., III et al. Autoimmunity is triggered by cPR-3105–201, a protein complementary to human autoantigen proteinase-3. Nat. Med.10, 72–79 (2004). ArticlePubMedCAS Google Scholar
Franssen, C.F. et al. In vitro neutrophil activation by antibodies to proteinase 3 and myeloperoxidase from patients with crescentic glomerulonephritis. J. Am. Soc. Nephrol.10, 1506–1515 (1999). PubMedCAS Google Scholar
Falk, R.J., Terrell, R.S., Charles, L.A. & Jennette, J.C. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc. Natl. Acad. Sci. USA87, 4115–4119 (1990). ArticlePubMedCASPubMed Central Google Scholar
Haslett, C., Guthrie, L.A., Kopaniak, M.M., Johnston, R.B., Jr & Henson, P.M. Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am. J. Pathol.119, 101–110 (1985). PubMedPubMed CentralCAS Google Scholar
Tse, W.Y., Nash, G.B., Hewins, P., Savage, C.O. & Adu, D. ANCA-induced neutrophil F-actin polymerization: implications for microvascular inflammation. Kidney Int.67, 130–139 (2005). ArticlePubMedCAS Google Scholar
Kriehuber, E. et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J. Exp. Med.194, 797–808 (2001). ArticlePubMedPubMed CentralCAS Google Scholar
Kerjaschki, D., Ullrich, R., Exner, M., Orlando, R.A. & Farquhar, M.G. Induction of passive Heymann nephritis with antibodies specific for a synthetic peptide derived from the receptor-associated protein. J. Exp. Med.183, 2007–2015 (1996). ArticlePubMedCAS Google Scholar
Granger, B.L. et al. Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells. J. Biol. Chem.265, 12036–12043 (1990). PubMedCAS Google Scholar
Little, M.A. et al. Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte-microvascular interactions in vivo. Blood106, 2050–2058 (2005). ArticlePubMedCAS Google Scholar
Ruth, A.J. et al. Anti-neutrophil cytoplasmic antibodies and effector CD4+ cells play nonredundant roles in anti-myeloperoxidase crescentic glomerulonephritis. J. Am. Soc. Nephrol.17, 1940–1949 (2006). ArticlePubMedCAS Google Scholar
González-Polo, R.A. et al. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J. Cell Sci.118, 3091–3102 (2005). ArticlePubMedCAS Google Scholar
Massey, A.C., Kaushik, S., Sovak, G., Kiffin, R. & Cuervo, A.M. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA103, 5805–5810 (2006). ArticlePubMedCASPubMed Central Google Scholar
Dengjel, J. et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl. Acad. Sci. USA102, 7922–7927 (2005). ArticlePubMedCASPubMed Central Google Scholar
Schmid, D., Pypaert, M. & Münz, C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity26, 79–92 (2007). ArticlePubMedCAS Google Scholar
Yuki, N. et al. Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome. Proc. Natl. Acad. Sci. USA101, 11404–11409 (2004). ArticlePubMedCASPubMed Central Google Scholar
Savige, J. et al. Antineutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis after immunisation with bacterial proteins. Clin. Exp. Rheumatol.20, 783–789 (2002). PubMedCAS Google Scholar
Connell, I. et al. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl. Acad. Sci. USA93, 9827–9832 (1996). ArticlePubMedCASPubMed Central Google Scholar
Martinez, J.J., Mulvey, M.A., Schilling, J.D., Pinkner, J.S. & Hultgren, S.J. Type 1 pilus–mediated bacterial invasion of bladder epithelial cells. EMBO J.19, 2803–2812 (2000). ArticlePubMedPubMed CentralCAS Google Scholar
Langermann, S. et al. Prevention of mucosal Escherichia coli infection by FimH-adhesin–based systemic vaccination. Science276, 607–611 (1997). ArticlePubMedCAS Google Scholar
Langermann, S. et al. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J. Infect. Dis.181, 774–778 (2000). ArticlePubMedCAS Google Scholar
Jennette, J.C. et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum.37, 187–192 (1994). ArticlePubMedCAS Google Scholar
Neumann, I. et al. Histological and clinical predictors of early and late renal outcome in ANCA-associated vasculitis. Nephrol. Dial. Transplant.20, 96–104 (2005). ArticlePubMed Google Scholar
Skrincosky, D. et al. Altered Golgi localisation of Core 2 β-1,6-_N_-Acetylglucosaminyltransferase leads to decreased synthesis of branched _O_-glycans. J. Biol. Chem.272, 22695–22702 (1997). ArticlePubMedCAS Google Scholar
Kain, R., Angata, K., Kerjaschki, D. & Fukuda, M. Molecular cloning and expression of a novel human trans-Golgi network glycoprotein, TGN51, that contains multiple tyrosine-containing motifs. J. Biol. Chem.273, 981–988 (1998). ArticlePubMedCAS Google Scholar
Kozarsky, K., Kingsley, D. & Krieger, M. Use of a mutant cell line to study the kinetics and function of _O_-linked glycosylation of low density lipoprotein receptors. Proc. Natl. Acad. Sci. USA85, 4335–4339 (1988). ArticlePubMedCASPubMed Central Google Scholar
Savige, J. et al. International group for consensus statement on testing and reporting of antineutrophil cytoplasmic antibodies (ANCA). Am. J. Clin. Pathol.120, 312–318 (2003). ArticlePubMedCAS Google Scholar
Schembri, M.A., Hasman, H. & Klemm, P. Expression and purification of the mannose recognition domain of the FimH adhesin. FEMS Microbiol. Lett.188, 147–151 (2000). ArticlePubMedCAS Google Scholar
Horvat, R., Hovorka, A., Dekan, G., Poczewski, H. & Kerjaschki, D. Endothelial cell membranes contain podocalyxin—the major sialoprotein of visceral glomerular epithelial cells. J. Cell Biol.102, 484–491 (1986). ArticlePubMedCAS Google Scholar