- Staessen, J.A., Wang, J., Bianchi, G. & Birkenhager, W.H. Essential hypertension. Lancet 361, 1629–1641 (2003).
Article Google Scholar
- de Gasparo, M., Catt, K.J., Inagami, T., Wright, J.W. & Unger, T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev. 52, 415–472 (2000).
CAS PubMed Google Scholar
- Touyz, R.M. & Berry, C. Recent advances in angiotensin II signaling. Braz. J. Med. Biol. Res. 35, 1001–1015 (2002).
Article CAS Google Scholar
- Chrissobolis, S. & Sobey, C.G. Evidence that Rho-kinase activity contributes to cerebral vascular tone in vivo and is enhanced during chronic hypertension: comparison with protein kinase C. Circ. Res. 88, 774–779 (2001).
Article CAS Google Scholar
- Mukai, Y. et al. Involvement of Rho-kinase in hypertensive vascular disease: a novel therapeutic target in hypertension. FASEB J. 15, 1062–1064 (2001).
Article CAS Google Scholar
- Seko, T. et al. Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ. Res. 92, 411–418 (2003).
Article CAS Google Scholar
- Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).
Article CAS Google Scholar
- Masumoto, A. et al. Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans. Hypertension 38, 1307–1310 (2001).
Article CAS Google Scholar
- Jaffe, A.B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005).
Article CAS Google Scholar
- Somlyo, A.P. & Somlyo, A.V. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325–1358 (2003).
Article CAS Google Scholar
- Loirand, G., Guerin, P. & Pacaud, P. Rho kinases in cardiovascular physiology and pathophysiology. Circ. Res. 98, 322–334 (2006).
Article CAS Google Scholar
- Kataoka, C. et al. Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 39, 245–250 (2002).
Article CAS Google Scholar
- Moriki, N. et al. RhoA activation in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. Hypertens. Res. 27, 263–270 (2004).
Article CAS Google Scholar
- Higashi, M. et al. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ. Res. 93, 767–775 (2003).
Article CAS Google Scholar
- Rossman, K.L., Der, C.J. & Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6, 167–180 (2005).
Article CAS Google Scholar
- Bos, J.L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877 (2007).
Article CAS Google Scholar
- Garcia-Mata, R. et al. Analysis of activated GAPs and GEFs in cell lysates. Methods Enzymol. 406, 425–437 (2006).
Article CAS Google Scholar
- Mehta, P.K. & Griendling, K.K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol. 292, C82–C97 (2007).
Article CAS Google Scholar
- Rubtsov, A. et al. Lsc regulates marginal-zone B cell migration and adhesion and is required for the IgM T-dependent antibody response. Immunity 23, 527–538 (2005).
Article CAS Google Scholar
- Wirth, A. et al. G12–G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat. Med. 14, 64–68 (2008).
Article CAS Google Scholar
- Fukuhara, S., Murga, C., Zohar, M., Igishi, T. & Gutkind, J.S. A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J. Biol. Chem. 274, 5868–5879 (1999).
Article CAS Google Scholar
- Kozasa, T. et al. p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 280, 2109–2111 (1998).
Article CAS Google Scholar
- Suzuki, N., Nakamura, S., Mano, H. & Kozasa, T. Galpha 12 activates Rho GTPase through tyrosine-phosphorylated leukemia-associated RhoGEF. Proc. Natl. Acad. Sci. USA 100, 733–738 (2003).
Article CAS Google Scholar
- Fukuhara, S., Chikumi, H. & Gutkind, J.S. Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) family to Rho. FEBS Lett. 485, 183–188 (2000).
Article CAS Google Scholar
- Wells, C.D. et al. Mechanisms for reversible regulation between G13 and Rho exchange factors. J. Biol. Chem. 277, 1174–1181 (2002).
Article CAS Google Scholar
- Frank, G.D. et al. Requirement of Ca(2+) and PKCdelta for Janus kinase 2 activation by angiotensin II: involvement of PYK2. Mol. Endocrinol. 16, 367–377 (2002).
CAS PubMed Google Scholar
- Marrero, M.B. et al. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375, 247–250 (1995).
Article CAS Google Scholar
- Ohtsu, H. et al. Central role of Gq in the hypertrophic signal transduction of angiotensin II in vascular smooth muscle cells. Endocrinology 149, 3569–3575 (2008).
Article CAS Google Scholar
- Keys, J.R., Greene, E.A., Koch, W.J. & Eckhart, A.D. Gq-coupled receptor agonists mediate cardiac hypertrophy via the vasculature. Hypertension 40, 660–666 (2002).
Article CAS Google Scholar
- Marrero, M.B. et al. Role of Janus kinase/signal transducer and activator of transcription and mitogen-activated protein kinase cascades in angiotensin II- and platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J. Biol. Chem. 272, 24684–24690 (1997).
Article CAS Google Scholar
- Shaw, S. et al. High glucose augments the angiotensin II-induced activation of JAK2 in vascular smooth muscle cells via the polyol pathway. J. Biol. Chem. 278, 30634–30641 (2003).
Article CAS Google Scholar
- Banes-Berceli, A.K. et al. Angiotensin II and endothelin-1 augment the vascular complications of diabetes via JAK2 activation. Am. J. Physiol. Heart Circ. Physiol. 293, H1291–H1299 (2007).
Article CAS Google Scholar
- Garcia-Mata, R. & Burridge, K. Catching a GEF by its tail. Trends Cell Biol. 17, 36–43 (2007).
Article CAS Google Scholar
- Fujii, A.M. & Vatner, S.F. Direct versus indirect pressor and vasoconstrictor actions of angiotensin in conscious dogs. Hypertension 7, 253–261 (1985).
Article CAS Google Scholar
- Rowe, B.P., Noble, A.R. & Munday, K.A. Blockade of pressor responses to angiotensins I and II and noradrenaline using phentolamine, propranolol and hexamethonium in conscious rabbits. Pflugers Arch. 382, 269–274 (1979).
Article CAS Google Scholar
- Cline, W.H. Jr. Role of released catecholamines in the vascular response to injected angiotensin II in the dog. J. Pharmacol. Exp. Ther. 216, 104–110 (1981).
CAS PubMed Google Scholar
- Ferrario, C.M., Barnes, K.L., Szilagyi, J.E. & Brosnihan, K.B. Physiological and pharmacological characterization of the area postrema pressor pathways in the normal dog. Hypertension 1, 235–245 (1979).
Article CAS Google Scholar
- Falcon, J.C. II, Phillips, M.I., Hoffman, W.E. & Brody, M.J. Effects of intraventricular angiotensin II mediated by the sympathetic nervous system. Am. J. Physiol. 235, H392–H399 (1978).
CAS PubMed Google Scholar
- Crowley, S.D. et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc. Natl. Acad. Sci. USA 103, 17985–17990 (2006).
Article CAS Google Scholar
- Ruilope, L.M., Lahera, V., Rodicio, J.L. & Carlos Romero, J. Are renal hemodynamics a key factor in the development and maintenance of arterial hypertension in humans? Hypertension 23, 3–9 (1994).
Article CAS Google Scholar
- Schiffrin, E.L. Effects of aldosterone on the vasculature. Hypertension 47, 312–318 (2006).
Article CAS Google Scholar
- Lemarie, C.A., Paradis, P. & Schiffrin, E.L. New insights on signaling cascades induced by cross-talk between angiotensin II and aldosterone. J. Mol. Med. 86, 673–678 (2008).
Article CAS Google Scholar
- Montezano, A.C. et al. Aldosterone and angiotensin II synergistically stimulate migration in vascular smooth muscle cells through c-Src-regulated redox-sensitive RhoA pathways. Arterioscler. Thromb. Vasc. Biol. 28, 1511–1518 (2008).
Article CAS Google Scholar
- Hein, L. et al. Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proc. Natl. Acad. Sci. USA 94, 6391–6396 (1997).
Article CAS Google Scholar
- Paradis, P., Dali-Youcef, N., Paradis, F.W., Thibault, G. & Nemer, M. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc. Natl. Acad. Sci. USA 97, 931–936 (2000).
Article CAS Google Scholar
- Struthers, A.D. & MacDonald, T.M. Review of aldosterone- and angiotensin II-induced target organ damage and prevention. Cardiovasc. Res. 61, 663–670 (2004).
Article CAS Google Scholar
- Feng, J. et al. Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J. Biol. Chem. 274, 37385–37390 (1999).
Article CAS Google Scholar
- Ren, X.D., Kiosses, W.B. & Schwartz, M.A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999).
Article CAS Google Scholar
- Mills, P.A. et al. A new method for measurement of blood pressure, heart rate, and activity in the mouse by radiotelemetry. J. Appl. Physiol. 88, 1537–1544 (2000).
Article CAS Google Scholar
- Krege, J.H., Hodgin, J.B., Hagaman, J.R. & Smithies, O. A noninvasive computerized tail-cuff system for measuring blood pressure in mice. Hypertension 25, 1111–1115 (1995).
Article CAS Google Scholar