- Mawe, G.M., Strong, D.S. & Sharkey, K.A. Plasticity of enteric nerve functions in the inflamed and postinflamed gut. Neurogastroenterol. Motil. 21, 481–491 (2009).
Article CAS Google Scholar
- De Giorgio, R. et al. Inflammatory neuropathies of the enteric nervous system. Gastroenterology 126, 1872–1883 (2004).
Article Google Scholar
- Wynn, G., Ma, B., Ruan, H.Z. & Burnstock, G. Purinergic component of mechanosensory transduction is increased in a rat model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G647–G657 (2004).
Article CAS Google Scholar
- Lomax, A.E., Mawe, G.M. & Sharkey, K.A. Synaptic facilitation and enhanced neuronal excitability in the submucosal plexus during experimental colitis in guinea-pig. J. Physiol. (Lond.) 564, 863–875 (2005).
Article CAS Google Scholar
- Friedman, D.J. et al. From the Cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc. Natl. Acad. Sci. USA 106, 16788–16793 (2009).
Article CAS Google Scholar
- Rybaczyk, L. et al. New bioinformatics approach to analyze gene expressions and signaling pathways reveals unique purine gene dysregulation profiles that distinguish between CD and UC. Inflamm. Bowel Dis. 15, 971–984 (2009).
Article Google Scholar
- Yiangou, Y. et al. ATP-gated ion channel P2X3 is increased in human inflammatory bowel disease. Neurogastroenterol. Motil. 13, 365–369 (2001).
Article CAS Google Scholar
- Guzman, J. et al. ADOA3R as a therapeutic target in experimental colitis: proof by validated high-density oligonucleotide microarray analysis. Inflamm. Bowel Dis. 12, 766–789 (2006).
Article Google Scholar
- Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).
Article CAS Google Scholar
- Wang, X. et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat. Med. 10, 821–827 (2004).
Article CAS Google Scholar
- Lazarowski, E.R., Boucher, R.C. & Harden, T.K. Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and nucleoside diphosphokinase to extracellular nucleotide concentrations. J. Biol. Chem. 275, 31061–31068 (2000).
Article CAS Google Scholar
- Sperlágh, B., Vizi, E.S., Wirkner, K. & Illes, P. P2X7 receptors in the nervous system. Prog. Neurobiol. 78, 327–346 (2006).
Article Google Scholar
- Cavaliere, F., Amadio, S., Sancesario, G., Bernardi, G. & Volonte, C. Synaptic P2X7 and oxygen/glucose deprivation in organotypic hippocampal cultures. J. Cereb. Blood Flow Metab. 24, 392–398 (2004).
Article CAS Google Scholar
- Hu, H. et al. Stimulation of the P2X7 receptor kills rat retinal ganglion cells in vivo. Exp. Eye Res. 91, 425–432 (2010).
Article CAS Google Scholar
- Zhang, X., Zhang, M., Laties, A.M. & Mitchell, C.H. Stimulation of P2X7 receptors elevates Ca2+ and kills retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 46, 2183–2191 (2005).
Article Google Scholar
- Linden, D.R. et al. Indiscriminate loss of myenteric neurones in the TNBS-inflamed guinea-pig distal colon. Neurogastroenterol. Motil. 17, 751–760 (2005).
Article CAS Google Scholar
- Locovei, S., Scemes, E., Qiu, F., Spray, D.C. & Dahl, G. Pannexin1 is part of the pore forming unit of the P2X7 receptor death complex. FEBS Lett. 581, 483–488 (2007).
Article CAS Google Scholar
- Seminario-Vidal, L. et al. Rho signaling regulates pannexin 1–mediated ATP release from airway epithelia. J. Biol. Chem. 286, 26277–26286 (2011).
Article CAS Google Scholar
- Thompson, R.J. et al. Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322, 1555–1559 (2008).
Article CAS Google Scholar
- Ferrari, D. et al. P2Z purinoreceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death. FEBS Lett. 447, 71–75 (1999).
Article CAS Google Scholar
- Ferrari, D. et al. Extracellular ATP triggers IL-1β release by activating the purinergic P2Z receptor of human macrophages. J. Immunol. 159, 1451–1458 (1997).
CAS Google Scholar
- Silverman, W., Locovei, S. & Dahl, G. Probenecid, a gout remedy, inhibits pannexin 1 channels. Am. J. Physiol. Cell Physiol. 295, C761–C767 (2008).
Article CAS Google Scholar
- Silverman, W.R. et al. The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J. Biol. Chem. 284, 18143–18151 (2009).
Article CAS Google Scholar
- Chekeni, F.B. et al. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010).
Article CAS Google Scholar
- Gulbransen, B.D. & Sharkey, K.A. Purinergic neuron-to-glia signaling in the enteric nervous system. Gastroenterology 136, 1349–1358 (2009).
Article CAS Google Scholar
- Gomes, P. et al. ATP-dependent paracrine communication between enteric neurons and glia in a primary cell culture derived from embryonic mice. Neurogastroenterol. Motil. 21, 870–e62 (2009).
Article CAS Google Scholar
- Collins, S.M. The immunomodulation of enteric neuromuscular function: implications for motility and inflammatory disorders. Gastroenterology 111, 1683–1699 (1996).
Article CAS Google Scholar
- Vasina, V. et al. Enteric neuroplasticity evoked by inflammation. Auton. Neurosci. 126–127, 264–272 (2006).
Article Google Scholar
- Krauter, E.M. et al. Changes in colonic motility and the electrophysiological properties of myenteric neurons persist following recovery from trinitrobenzene sulfonic acid colitis in the guinea pig. Neurogastroenterol. Motil. 19, 990–1000 (2007).
CAS PubMed Google Scholar
- Bossone, C., Hosseini, J.M., Pineiro-Carrero, V. & Shea-Donohue, T. Alterations in spontaneous contractions in vitro after repeated inflammation of rat distal colon. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G949–G957 (2001).
Article CAS Google Scholar
- Mizuta, Y., Isomoto, H. & Takahashi, T. Impaired nitrergic innervation in rat colitis induced by dextran sulfate sodium. Gastroenterology 118, 714–723 (2000).
Article CAS Google Scholar
- Depoortere, I., Thijs, T. & Peeters, T.L. Generalized loss of inhibitory innervation reverses serotonergic inhibition into excitation in a rabbit model of TNBS-colitis. Br. J. Pharmacol. 135, 2011–2019 (2002).
Article CAS Google Scholar
- Strong, D.S. et al. Purinergic neuromuscular transmission is selectively attenuated in ulcerated regions of inflamed guinea pig distal colon. J. Physiol. (Lond.) 588, 847–859 (2010).
Article CAS Google Scholar
- McCafferty, D.M. et al. Spontaneously developing chronic colitis in IL-10/iNOS double-deficient mice. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G90–G99 (2000).
Article CAS Google Scholar
- Wirtz, S., Neufert, C., Weigmann, B. & Neurath, M.F. Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2, 541–546 (2007).
Article CAS Google Scholar
- Storr, M.A. et al. Activation of the cannabinoid 2 receptor (CB2) protects against experimental colitis. Inflamm. Bowel Dis. 15, 1678–1685 (2009).
Article Google Scholar
- Gulbransen, B.D., Bains, J.S. & Sharkey, K.A. Enteric glia are targets of the sympathetic innervation of the myenteric plexus in the guinea pig distal colon. J. Neurosci. 30, 6801–6809 (2010).
Article CAS Google Scholar
- Nasser, Y. et al. Role of enteric glia in intestinal physiology: effects of the gliotoxin fluorocitrate on motor and secretory function. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G912–G927 (2006).
Article CAS Google Scholar