Duffy, D. & Rader, D.J. Update on strategies to increase HDL quantity and function. Nat. Rev. Cardiol.6, 455–463 (2009). Article Google Scholar
Navab, M., Reddy, S.T., Van Lenten, B.J. & Fogelman, A.M. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat. Rev. Cardiol.8, 222–232 (2011). ArticleCAS Google Scholar
Khera, A.V. et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med.364, 127–135 (2011). ArticleCASPubMedPubMed Central Google Scholar
Vickers, K.C., Palmisano, B.T., Shoucri, B.M., Shamburek, R.D. & Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol.13, 423–433 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fisher, E.A., Feig, J.E., Hewing, B., Hazen, S.L. & Smith, J.D. High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol.32, 2813–2820 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gordon, T., Castelli, W.P., Hjortland, M.C., Kannel, W.B. & Dawber, T.R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am. J. Med.62, 707–714 (1977). ArticleCASPubMed Google Scholar
Badimon, J.J., Badimon, L., Galvez, A., Dische, R. & Fuster, V. High density lipoprotein plasma fractions inhibit aortic fatty streaks in cholesterol-fed rabbits. Lab. Invest.60, 455–461 (1989). CASPubMed Google Scholar
Badimon, J.J., Badimon, L. & Fuster, V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J. Clin. Invest.85, 1234–1241 (1990). ArticleCASPubMedPubMed Central Google Scholar
Rubin, E.M., Krauss, R.M., Spangler, E.A., Verstuyft, J.G. & Clift, S.M. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature353, 265–267 (1991). ArticleCASPubMed Google Scholar
Plump, A.S., Scott, C.J. & Breslow, J.L. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E–deficient mouse. Proc. Natl. Acad. Sci. USA91, 9607–9611 (1994). ArticleCASPubMed Google Scholar
Hughes, S.D., Verstuyft, J. & Rubin, E.M. HDL deficiency in genetically engineered mice requires elevated LDL to accelerate atherogenesis. Arterioscler. Thromb. Vasc. Biol.17, 1725–1729 (1997). ArticleCASPubMed Google Scholar
Nissen, S.E. et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. J. Am. Med. Assoc.290, 2292–2300 (2003). ArticleCAS Google Scholar
Sacks, F.M. et al. Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo. J. Lipid Res.50, 894–907 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tardif, J.C. et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. J. Am. Med. Assoc.297, 1675–1682 (2007). Article Google Scholar
Barter, P.J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med.357, 2109–2122 (2007). ArticleCAS Google Scholar
Nissen, S.E. et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med.356, 1304–1316 (2007). ArticleCASPubMed Google Scholar
Boden, W.E. et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med.365, 2255–2267 (2011). ArticleCAS Google Scholar
Voight, B.F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet380, 572–580 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bhattacharyya, T. et al. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. J. Am. Med. Assoc.299, 1265–1276 (2008). ArticleCAS Google Scholar
Besler, C. et al. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J. Clin. Invest.121, 2693–2708 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sorci-Thomas, M.G. & Thomas, M.J. High density lipoprotein biogenesis, cholesterol efflux, and immune cell function. Arterioscler. Thromb. Vasc. Biol.32, 2561–2565 (2012). ArticleCASPubMedPubMed Central Google Scholar
Shih, D.M. et al. Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J. Biol. Chem.275, 17527–17535 (2000). ArticleCASPubMed Google Scholar
Tang, W.H. et al. Clinical and genetic association of serum paraoxonase and arylesterase activities with cardiovascular risk. Arterioscler. Thromb. Vasc. Biol.32, 2803–2812 (2012). ArticleCASPubMedPubMed Central Google Scholar
DiDonato, J.A. et al. Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma. Circulation128, 1644–1655 (2013). ArticleCASPubMed Google Scholar
Zheng, L. et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest.114, 529–541 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wu, Z. et al. The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction. Nat. Struct. Mol. Biol.14, 861–868 (2007). ArticleCASPubMed Google Scholar
Peng, D.Q. et al. Apolipoprotein A-I tryptophan substitution leads to resistance to myeloperoxidase-mediated loss of function. Arterioscler. Thromb. Vasc. Biol.28, 2063–2070 (2008). ArticleCASPubMedPubMed Central Google Scholar
Undurti, A. et al. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J. Biol. Chem.284, 30825–30835 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hadfield, K.A. et al. Myeloperoxidase-derived oxidants modify apolipoprotein A-I and generate dysfunctional high-density lipoproteins: comparison of hypothiocyanous acid (HOSCN) with hypochlorous acid (HOCl). Biochem. J.449, 531–542 (2013). ArticleCASPubMed Google Scholar
Van Lenten, B.J. et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J. Clin. Invest.96, 2758–2767 (1995). ArticleCASPubMedPubMed Central Google Scholar
Ansell, B.J. et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation108, 2751–2756 (2003). ArticleCASPubMed Google Scholar
Charles-Schoeman, C. et al. Effects of high-dose atorvastatin on antiinflammatory properties of high density lipoprotein in patients with rheumatoid arthritis: a pilot study. J. Rheumatol.34, 1459–1464 (2007). CASPubMed Google Scholar
Shao, B., Pennathur, S. & Heinecke, J.W. Myeloperoxidase targets apolipoprotein A-I, the major high density lipoprotein protein, for site-specific oxidation in human atherosclerotic lesions. J. Biol. Chem.287, 6375–6386 (2012). ArticleCASPubMedPubMed Central Google Scholar
Brennan, M.L. et al. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J. Biol. Chem.277, 17415–17427 (2002). ArticleCASPubMed Google Scholar
Timmins, J.M. et al. Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J. Clin. Invest.115, 1333–1342 (2005). ArticleCASPubMedPubMed Central Google Scholar
Barter, P.J. & Kastelein, J.J. Targeting cholesteryl ester transfer protein for the prevention and management of cardiovascular disease. J. Am. Coll. Cardiol.47, 492–499 (2006). ArticleCASPubMed Google Scholar
Bergt, C. et al. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc. Natl. Acad. Sci. USA101, 13032–13037 (2004). ArticleCASPubMed Google Scholar
Shao, B. et al. Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J. Biol. Chem.280, 5983–5993 (2005). ArticleCASPubMed Google Scholar
Segrest, J.P. et al. A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein. J. Biol. Chem.274, 31755–31758 (1999). ArticleCASPubMed Google Scholar
Gogonea, V. et al. Congruency between biophysical data from multiple platforms and molecular dynamics simulation of the double-super helix model of nascent high-density lipoprotein. Biochemistry49, 7323–7343 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wu, Z. et al. The low resolution structure of ApoA1 in spherical high density lipoprotein revealed by small angle neutron scattering. J. Biol. Chem.286, 12495–12508 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gogonea, V. et al. The low-resolution structure of nHDL reconstituted with DMPC with and without cholesterol reveals a mechanism for particle expansion. J. Lipid Res.54, 966–983 (2013). ArticleCASPubMedPubMed Central Google Scholar
Pattison, D.I. & Davies, M.J. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol.14, 1453–1464 (2001). ArticleCASPubMed Google Scholar
Baldus, S. et al. Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration. J. Clin. Invest.108, 1759–1770 (2001). ArticleCASPubMedPubMed Central Google Scholar
Abu-Soud, H.M. & Hazen, S.L. Nitric oxide is a physiological substrate for mammalian peroxidases. J. Biol. Chem.275, 37524–37532 (2000). ArticleCASPubMed Google Scholar
Eiserich, J.P. et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science296, 2391–2394 (2002). ArticleCASPubMed Google Scholar
Wang, Y. et al. Myeloperoxidase inactivates TIMP-1 by oxidizing its N-terminal cysteine residue: an oxidative mechanism for regulating proteolysis during inflammation. J. Biol. Chem.282, 31826–31834 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sugiyama, S. et al. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arterioscler. Thromb. Vasc. Biol.24, 1309–1314 (2004). ArticleCASPubMed Google Scholar
Nahrendorf, M. et al. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation117, 1153–1160 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ronald, J.A. et al. Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation120, 592–599 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hazen, S.L. & Heinecke, J.W. 3-chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J. Clin. Invest.99, 2075–2081 (1997). ArticleCASPubMedPubMed Central Google Scholar
Zamanian-Daryoush, M. et al. The cardioprotective protein apolipoprotein A1 promotes potent anti-tumorigenic effects. J. Biol. Chem.288, 21237–21252 (2013). ArticleCASPubMedPubMed Central Google Scholar
Markwell, M.A., Haas, S.M., Bieber, L.L. & Tolbert, N.E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem.87, 206–210 (1978). ArticleCASPubMed Google Scholar
Ryan, R.O., Forte, T.M. & Oda, M.N. Optimized bacterial expression of human apolipoprotein A-I. Protein Expr. Purif.27, 98–103 (2003). ArticleCASPubMed Google Scholar
Matz, C.E. & Jonas, A. Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions. J. Biol. Chem.257, 4535–4540 (1982). CASPubMed Google Scholar
Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature256, 495–497 (1975). Article Google Scholar
Todorovski, T., Fedorova, M., Hennig, L. & Hoffmann, R. Synthesis of peptides containing 5-hydroxytryptophan, oxindolylalanine, N-formylkynurenine and kynurenine. J. Pept. Sci.17, 256–262 (2011). ArticleCASPubMed Google Scholar
Ståhlman, M. et al. Proteomics and lipids of lipoproteins isolated at low salt concentrations in D2O/sucrose or in KBr. J. Lipid Res.49, 481–490 (2008). ArticleCASPubMed Google Scholar
Robinet, P., Wang, Z., Hazen, S.L. & Smith, J.D. A simple and sensitive enzymatic method for cholesterol quantification in macrophages and foam cells. J. Lipid Res.51, 3364–3369 (2010). ArticleCASPubMedPubMed Central Google Scholar
Barbas, C.F. III, Burton, D.R., Scott, J.K. & Silverman, G.J. Phage Display: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).
Marks, J.D. et al. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol.222, 581–597 (1991). ArticleCASPubMed Google Scholar
Chung, S. et al. Targeted deletion of hepatocyte ABCA1 leads to very low density lipoprotein triglyceride overproduction and low density lipoprotein hypercatabolism. J. Biol. Chem.285, 12197–12209 (2010). ArticleCASPubMedPubMed Central Google Scholar