Lambert, J.M., Lopez, E.F. & Lindsey, M.L. Macrophage roles following myocardial infarction. Int. J. Cardiol.130, 147–158 (2008). PubMedPubMed Central Google Scholar
Biasucci, L.M. et al. Elevated levels of interleukin-6 in unstable angina. Circulation94, 874–877 (1996). CASPubMed Google Scholar
Fisman, E.Z. et al. Interleukin-6 and the risk of future cardiovascular events in patients with angina pectoris and/or healed myocardial infarction. Am. J. Cardiol.98, 14–18 (2006). CASPubMed Google Scholar
Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med.204, 3037–3047 (2007). CASPubMedPubMed Central Google Scholar
Dobaczewski, M., Gonzalez-Quesada, C. & Frangogiannis, N.G. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J. Mol. Cell. Cardiol.48, 504–511 (2010). CASPubMed Google Scholar
Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity40, 91–104 (2014). CASPubMedPubMed Central Google Scholar
van Amerongen, M.J., Harmsen, M.C., van Rooijen, N., Petersen, A.H. & van Luyn, M.J. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am. J. Pathol.170, 818–829 (2007). CASPubMedPubMed Central Google Scholar
Irwin, M.W. et al. Tissue expression and immunolocalization of tumor necrosis factor-alpha in postinfarction dysfunctional myocardium. Circulation99, 1492–1498 (1999). CASPubMed Google Scholar
Iversen, P.O., Nicolaysen, G. & Sioud, M. DNA enzyme targeting TNF-alpha mRNA improves hemodynamic performance in rats with postinfarction heart failure. Am. J. Physiol. Heart Circ. Physiol.281, H2211–H2217 (2001). CASPubMed Google Scholar
Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med.209, 123–137 (2012). CASPubMedPubMed Central Google Scholar
Baggiolini, M. Chemokines and leukocyte traffic. Nature392, 565–568 (1998). CASPubMed Google Scholar
Frangogiannis, N.G. Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm. Res.53, 585–595 (2004). CASPubMed Google Scholar
Frangogiannis, N.G. The role of the chemokines in myocardial ischemia and reperfusion. Curr. Vasc. Pharmacol.2, 163–174 (2004). CASPubMed Google Scholar
Dobaczewski, M. & Frangogiannis, N.G. Chemokines in myocardial infarction: translating basic research into clinical medicine. Future Cardiol.4, 347–351 (2008). PubMed Google Scholar
Grenier, A. et al. Oncostatin M production and regulation by human polymorphonuclear neutrophils. Blood93, 1413–1421 (1999). CASPubMed Google Scholar
Radka, S.F., Nakamura, S., Sakurada, S. & Salahuddin, S.Z. Correlation of oncostatin M secretion by human retrovirus-infected cells with potent growth stimulation of cultured spindle cells from AIDS-Kaposi's sarcoma. J. Immunol.150, 5195–5201 (1993). CASPubMed Google Scholar
Brown, T.J., Lioubin, M.N. & Marquardt, H. Purification and characterization of cytostatic lymphokines produced by activated human T lymphocytes. Synergistic antiproliferative activity of transforming growth factor beta 1, interferon-gamma, and oncostatin M for human melanoma cells. J. Immunol.139, 2977–2983 (1987). CASPubMed Google Scholar
Kubin, T. et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell9, 420–432 (2011). CASPubMed Google Scholar
Watanabe, R. et al. Gene expression profiles of cardiomyocytes in rat autoimmune myocarditis by DNA microarray and increase of regenerating gene family. Transl. Res.152, 119–127 (2008). CASPubMed Google Scholar
Closa, D., Motoo, Y. & Iovanna, J.L. Pancreatitis-associated protein: from a lectin to an anti-inflammatory cytokine. World J. Gastroenterol.13, 170–174 (2007). CASPubMedPubMed Central Google Scholar
Wilkinson, P.C. Cell locomotion and chemotaxis: basic concepts and methodological approaches. Methods10, 74–81 (1996). CASPubMed Google Scholar
Gouwy, M. et al. Synergy between coproduced CC and CXC chemokines in monocyte chemotaxis through receptor-mediated events. Mol. Pharmacol.74, 485–495 (2008). CASPubMed Google Scholar
Mortier, A., Van Damme, J. & Proost, P. Overview of the mechanisms regulating chemokine activity and availability. Immunol. Lett.145, 2–9 (2012). CASPubMed Google Scholar
Benigni, F. et al. Six different cytokines that share GP130 as a receptor subunit, induce serum amyloid A and potentiate the induction of interleukin-6 and the activation of the hypothalamus-pituitary-adrenal axis by interleukin-1. Blood87, 1851–1854 (1996). CASPubMed Google Scholar
Hintzen, C., Haan, C., Tuckermann, J.P., Heinrich, P.C. & Hermanns, H.M. Oncostatin M-induced and constitutive activation of the JAK2/STAT5/CIS pathway suppresses CCL1, but not CCL7 and CCL8, chemokine expression. J. Immunol.181, 7341–7349 (2008). CASPubMed Google Scholar
Kiji, T. et al. Activation of regenerating gene Reg in rat and human hearts in response to acute stress. Am. J. Physiol. Heart Circ. Physiol.289, H277–H284 (2005). CASPubMed Google Scholar
Iovanna, J., Orelle, B., Keim, V. & Dagorn, J.C. Messenger RNA sequence and expression of rat pancreatitis-associated protein, a lectin-related protein overexpressed during acute experimental pancreatitis. J. Biol. Chem.266, 24664–24669 (1991). CASPubMed Google Scholar
Lai, Y. et al. The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity37, 74–84 (2012). CASPubMed Google Scholar
Nishimune, H. et al. Reg-2 is a motoneuron neurotrophic factor and a signalling intermediate in the CNTF survival pathway. Nat. Cell Biol.2, 906–914 (2000). CASPubMed Google Scholar
Livesey, F.J. et al. A Schwann cell mitogen accompanying regeneration of motor neurons. Nature390, 614–618 (1997). CASPubMed Google Scholar
Namikawa, K., Okamoto, T., Suzuki, A., Konishi, H. & Kiyama, H. Pancreatitis-associated protein-III is a novel macrophage chemoattractant implicated in nerve regeneration. J. Neurosci.26, 7460–7467 (2006). CASPubMedPubMed Central Google Scholar
Deten, A., Volz, H.C., Briest, W. & Zimmer, H.G. Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovasc. Res.55, 329–340 (2002). CASPubMed Google Scholar
Zidar, N., Jeruc, J., Balazic, J. & Stajer, D. Neutrophils in human myocardial infarction with rupture of the free wall. Cardiovasc. Pathol.14, 247–250 (2005). CASPubMed Google Scholar
Cox, G., Crossley, J. & Xing, Z. Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am. J. Respir. Cell Mol. Biol.12, 232–237 (1995). CASPubMed Google Scholar
Goren, I. et al. A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. Am. J. Pathol.175, 132–147 (2009). CASPubMedPubMed Central Google Scholar
Gordy, C., Pua, H., Sempowski, G.D. & He, Y.W. Regulation of steady-state neutrophil homeostasis by macrophages. Blood117, 618–629 (2011). CASPubMedPubMed Central Google Scholar
Hilfiker-Kleiner, D. et al. Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ. Res.95, 187–195 (2004). CASPubMed Google Scholar
Oshima, Y. et al. STAT3 mediates cardioprotection against ischemia/reperfusion injury through metallothionein induction in the heart. Cardiovasc. Res.65, 428–435 (2005). CASPubMed Google Scholar
Haghikia, A., Stapel, B., Hoch, M. & Hilfiker-Kleiner, D. STAT3 and cardiac remodeling. Heart Fail. Rev.16, 35–47 (2011). CASPubMed Google Scholar
Stross, C. et al. Oncostatin M receptor-mediated signal transduction is negatively regulated by SOCS3 through a receptor tyrosine-independent mechanism. J. Biol. Chem.281, 8458–8468 (2006). CASPubMed Google Scholar
Chattopadhyay, S. et al. Interleukin-31 and oncostatin-M mediate distinct signaling reactions and response patterns in lung epithelial cells. J. Biol. Chem.282, 3014–3026 (2007). CASPubMed Google Scholar
Kosmala, W., Przewlocka-Kosmala, M. & Mazurek, W. Proinflammatory cytokines and myocardial viability in patients after acute myocardial infarction. Int. J. Cardiol.101, 449–456 (2005). PubMed Google Scholar
Jiang, B. & Liao, R. The paradoxical role of inflammation in cardiac repair and regeneration. J. Cardiovasc. Transl. Res.3, 410–416 (2010). PubMed Google Scholar
Kempf, T., Zarbock, A., Vestweber, D. & Wollert, K.C. Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing. J. Mol. Med. (Berl.)90, 361–369 (2012). Google Scholar
Tanaka, M. et al. Targeted disruption of oncostatin M receptor results in altered hematopoiesis. Blood102, 3154–3162 (2003). CASPubMed Google Scholar
Lieu, H.T. et al. Reg2 inactivation increases sensitivity to Fas hepatotoxicity and delays liver regeneration post-hepatectomy in mice. Hepatology44, 1452–1464 (2006). CASPubMed Google Scholar
Ebelt, H. et al. Cellular cardiomyoplasty: improvement of left ventricular function correlates with the release of cardioactive cytokines. Stem Cells25, 236–244 (2007). CASPubMed Google Scholar
Kubin, T. et al. Porcine aortic endothelial cells show little effects on smooth muscle cells but are potent stimulators of cardiomyocyte growth. Mol. Cell. Biochem.242, 39–45 (2003). CASPubMed Google Scholar
Kubin, T. et al. Microvascular endothelial cells remodel cultured adult cardiomyocytes and increase their survival. Am. J. Physiol.276, H2179–H2187 (1999). CASPubMed Google Scholar
Tofaris, G.K., Patterson, P.H., Jessen, K.R. & Mirsky, R. Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J. Neurosci.22, 6696–6703 (2002). CASPubMedPubMed Central Google Scholar
Zamilpa, R. et al. CC chemokine receptor 5 deletion impairs macrophage activation and induces adverse remodeling following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol.300, H1418–H1426 (2011). CASPubMedPubMed Central Google Scholar
Boettger, T. et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest.119, 2634–2647 (2009). CASPubMedPubMed Central Google Scholar
Neuhaus, P. et al. Reduced mobility of fibroblast growth factor (FGF)-deficient myoblasts might contribute to dystrophic changes in the musculature of FGF2/FGF6/mdx triple-mutant mice. Mol. Cell. Biol.23, 6037–6048 (2003). CASPubMedPubMed Central Google Scholar
Elsässer, A. et al. A self-perpetuating vicious cycle of tissue damage in human hibernating myocardium. Mol. Cell. Biochem.213, 17–28 (2000). PubMed Google Scholar
Wiggins, H. & Rappoport, J. An agarose spot assay for chemotactic invasion. Biotechniques48, 121–124 (2010). CASPubMed Google Scholar
Virag, J.A. & Lust, R.M. Coronary artery ligation and intramyocardial injection in a murine model of infarction. J. Vis. Exp.52, 2581 (2011). Google Scholar