Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models (original) (raw)
Meguid El Nahas, A. & Bello, A.K. Chronic kidney disease: the global challenge. Lancet365, 331–340 (2005). CASPubMed Google Scholar
Saran, R., Hedgeman, E., Huseini, M., Stack, A. & Shahinian, V. Surveillance of chronic kidney disease around the world: tracking and reining in a global problem. Adv. Chronic Kidney Dis.17, 271–281 (2010). PubMed Google Scholar
Haraldsson, B., Nystrom, J. & Deen, W.M. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev.88, 451–487 (2008). CASPubMed Google Scholar
Brown, E.J. et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat. Genet.42, 72–76 (2010). CASPubMed Google Scholar
Boyer, O. et al. Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J. Am. Soc. Nephrol.22, 239–245 (2011). CASPubMedPubMed Central Google Scholar
Santín, S. et al. Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis. Kidney Int.76, 1268–1276 (2009). PubMed Google Scholar
Shih, N.Y. et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science286, 312–315 (1999). CASPubMed Google Scholar
Kaplan, J.M. et al. Mutations in ACTN4, encoding α-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet.24, 251–256 (2000). CASPubMed Google Scholar
Pagtalunan, M.E. et al. Podocyte loss and progressive glomerular injury in type II diabetes. J. Clin. Invest.99, 342–348 (1997). CASPubMedPubMed Central Google Scholar
Faul, C., Asanuma, K., Yanagida-Asanuma, E., Kim, K. & Mundel, P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol.17, 428–437 (2007). CASPubMed Google Scholar
Wiggins, R.C. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int.71, 1205–1214 (2007). CASPubMed Google Scholar
Jefferson, J.A., Alpers, C.E. & Shankland, S.J. Podocyte biology for the bedside. Am. J. Kidney Dis.58, 835–845 (2011). PubMedPubMed Central Google Scholar
Tryggvason, K., Patrakka, J. & Wartiovaara, J. Hereditary proteinuria syndromes and mechanisms of proteinuria. N. Engl. J. Med.354, 1387–1401 (2006). CASPubMed Google Scholar
Seiler, M.W., Rennke, H.G., Venkatachalam, M.A. & Cotran, R.S. Pathogenesis of polycation-induced alterations (“fusion”) of glomerular epithelium. Lab. Invest.36, 48–61 (1977). CASPubMed Google Scholar
Reiser, J. & Sever, S. Podocyte biology and pathogenesis of kidney disease. Annu. Rev. Med.64, 357–366 (2013). CASPubMed Google Scholar
Sever, S. et al. Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J. Clin. Invest.117, 2095–2104 (2007). CASPubMedPubMed Central Google Scholar
Soda, K. et al. Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. J. Clin. Invest.122, 4401–4411 (2012). CASPubMedPubMed Central Google Scholar
Mettlen, M., Pucadyil, T., Ramachandran, R. & Schmid, S.L. Dissecting dynamin′s role in clathrin-mediated endocytosis. Biochem. Soc. Trans.37, 1022–1026 (2009). CASPubMedPubMed Central Google Scholar
Ross, J.A. et al. Dimeric endophilin A2 stimulates assembly and GTPase activity of dynamin 2. Biophys. J.100, 729–737 (2011). CASPubMedPubMed Central Google Scholar
Hill, T. et al. Small molecule inhibitors of dynamin I GTPase activity: development of dimeric tyrphostins. J. Med. Chem.48, 7781–7788 (2005). CASPubMed Google Scholar
Gu, C. et al. Regulation of dynamin oligomerization in cells: the role of dynamin-actin interactions and its GTPase activity. Traffic15, 819–838 (2014). CASPubMedPubMed Central Google Scholar
Hanke, N. et al. “Zebrafishing” for novel genes relevant to the glomerular filtration barrier. BioMed Research International2013, 658270 (2013). PubMedPubMed Central Google Scholar
Hentschel, D.M. et al. Rapid screening of glomerular slit diaphragm integrity in larval zebrafish. Am. J. Physiol. Renal Physiol.293, F1746–F1750 (2007). CASPubMed Google Scholar
Kirsch, T. et al. Knockdown of the hypertension-associated gene NOSTRIN alters glomerular barrier function in zebrafish (Danio rerio). Hypertension62, 726–730 (2013). CASPubMed Google Scholar
Song, B.D., Yarar, D. & Schmid, S.L. An assembly-incompetent mutant establishes a requirement for dynamin self-assembly in clathrin-mediated endocytosis in vivo. Mol. Biol. Cell15, 2243–2252 (2004). CASPubMedPubMed Central Google Scholar
Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med.14, 931–938 (2008). CASPubMedPubMed Central Google Scholar
Pippin, J.W. et al. Inducible rodent models of acquired podocyte diseases. Am. J. Physiol. Renal Physiol.296, F213–F229 (2009). CASPubMed Google Scholar
Sever, S., Muhlberg, A.B. & Schmid, S.L. Impairment of dynamin′s GAP domain stimulates receptor-mediated endocytosis. Nature398, 481–486 (1999). CASPubMed Google Scholar
Henderson, J.M., Al-Waheeb, S., Weins, A., Dandapani, S.V. & Pollak, M.R. Mice with altered α-actinin-4 expression have distinct morphologic patterns of glomerular disease. Kidney Int.73, 741–750 (2008). CASPubMedPubMed Central Google Scholar
Yao, J. et al. α-Actinin-4-mediated FSGS: an inherited kidney disease caused by an aggregated and rapidly degraded cytoskeletal protein. PLoS Biol.2, e167 (2004). PubMedPubMed Central Google Scholar
Tossidou, I. et al. CIN85/RukL is a novel binding partner of nephrin and podocin and mediates slit diaphragm turnover in podocytes. J. Biol. Chem.285, 25285–25295 (2010). CASPubMedPubMed Central Google Scholar
Meier, M. et al. Deletion of protein kinase C-ɛ signaling pathway induces glomerulosclerosis and tubulointerstitial fibrosis in vivo. J. Am. Soc. Nephrol.18, 1190–1198 (2007). CASPubMed Google Scholar
Akita, Y. Protein kinase Cɛ: novel aspects of its multiple functions in cellular signaling. FEBS J.275, 3987 (2008). CASPubMed Google Scholar
Chhabra, E.S. & Higgs, H.N. INF2 is a WASP homology 2 motif-containing formin that severs actin filaments and accelerates both polymerization and depolymerization. J. Biol. Chem.281, 26754–26767 (2006). CASPubMed Google Scholar
Ruotsalainen, V. et al. Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc. Natl. Acad. Sci. USA96, 7962–7967 (1999). CASPubMed Google Scholar
Graham, M.L., Janecek, J.L., Kittredge, J.A., Hering, B.J. & Schuurman, H.J. The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comp. Med.61, 356–360 (2011). CASPubMedPubMed Central Google Scholar
Giganti, A. & Friederich, E. The actin cytoskeleton as a therapeutic target: state of the art and future directions. Prog. Cell Cycle Res.5, 511–525 (2003). PubMed Google Scholar
Schiff, P.B., Fant, J. & Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature277, 665–667 (1979). CASPubMed Google Scholar
Altschuler, Y. et al. Redundant and distinct functions for dynamin-1 and dynamin-2 isoforms. J. Cell Biol.143, 1871–1881 (1998). CASPubMedPubMed Central Google Scholar
Gowrishankar, K. et al. Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell149, 1353–1367 (2012). CASPubMed Google Scholar
Byron, A. et al. Glomerular cell cross-talk influences composition and assembly of extracellular matrix. J. Am. Soc. Nephrol.25, 953–966 (2014). CASPubMedPubMed Central Google Scholar
Menon, M.C., Chuang, P.Y. & He, C.J. The glomerular filtration barrier: components and crosstalk. Int. J. Nephrol.2012, 749010 (2012). PubMedPubMed Central Google Scholar
Shankland, S.J., Pippin, J.W. & Duffield, J.S. Progenitor cells and podocyte regeneration. Semin. Nephrol.34, 418–428 (2014). CASPubMedPubMed Central Google Scholar
Daehn, I. et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J. Clin. Invest.124, 1608–1621 (2014). CASPubMedPubMed Central Google Scholar
Quan, A. & Robinson, P.J. Rapid purification of native dynamin I and colorimetric GTPase assay. Methods Enzymol.404, 556–569 (2005). CASPubMed Google Scholar
Leonard, M., Song, B.D., Ramachandran, R. & Schmid, S.L. Robust colorimetric assays for dynamin′s basal and stimulated GTPase activities. Methods Enzymol.404, 490–503 (2005). CASPubMed Google Scholar
Mundel, P., Reiser, J. & Kriz, W. Induction of differentiation in cultured rat and human podocytes. J. Am. Soc. Nephrol.8, 697–705 (1997). CASPubMed Google Scholar
Worthmann, K. et al. Def-6, a novel regulator of small GTPases in podocytes, acts downstream of atypical protein kinase C (aPKC) λ/ι. Am. J. Pathol.183, 1945–1959 (2013). CASPubMedPubMed Central Google Scholar
Schiffer, M., Mundel, P., Shaw, A.S. & Bottinger, E.P. A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-β-induced apoptosis. J. Biol. Chem.279, 37004–37012 (2004). CASPubMed Google Scholar
Xie, J., Farage, E., Sugimoto, M. & Anand-Apte, B. A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development. BMC Dev. Biol.10, 76 (2010). PubMedPubMed Central Google Scholar
Ashworth, S. et al. Cofilin-1 inactivation leads to proteinuria–studies in zebrafish, mice and humans. PLoS ONE5, e12626 (2010). PubMedPubMed Central Google Scholar
Hilfiker-Kleiner, D. et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell128, 589–600 (2007). CAS Google Scholar