Caspase-2 cleavage of tau reversibly impairs memory (original) (raw)
Spillantini, M.G. & Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol.12, 609–622 (2013). CASPubMed Google Scholar
Ballatore, C., Lee, V.M. & Trojanowski, J.Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat. Rev. Neurosci.8, 663–672 (2007). CASPubMed Google Scholar
Ittner, L.M. et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models. Cell142, 387–397 (2010). CASPubMed Google Scholar
Dixit, R., Ross, J.L., Goldman, Y.E. & Holzbaur, E.L. Differential regulation of dynein and kinesin motor proteins by tau. Science319, 1086–1089 (2008). CASPubMedPubMed Central Google Scholar
Fath, T., Eidenmüller, J. & Brandt, R. Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer's disease. J. Neurosci.22, 9733–9741 (2002). CASPubMedPubMed Central Google Scholar
Gomez-Isla, T. et al. Clinical and pathological correlates of apolipoprotein E–ɛ4 in Alzheimer's disease. Ann. Neurol.39, 62–70 (1996). CASPubMed Google Scholar
Rocher, A.B. et al. Structural and functional changes in tau-mutant mice neurons are not linked to the presence of NFTs. Exp. Neurol.223, 385–393 (2010). CASPubMed Google Scholar
Menkes-Caspi, N. et al. Pathological tau disrupts ongoing network activity. Neuron85, 959–966 (2015). CASPubMed Google Scholar
Santacruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science309, 476–481 (2005). CASPubMedPubMed Central Google Scholar
Ramsden, M. et al. Age-dependent neurofibrillary tangle formation, neuron loss and memory impairment in a mouse model of human tauopathy (P301L). J. Neurosci.25, 10637–10647 (2005). CASPubMedPubMed Central Google Scholar
Kopeikina, K.J. et al. Synaptic alterations in the rTg4510 mouse model of tauopathy. J. Comp. Neurol.521, 1334–1353 (2013). CASPubMedPubMed Central Google Scholar
Rawlings, N.D., Waller, M., Barrett, A.J. & Bateman, A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res.42, D503–D509 (2014). CASPubMed Google Scholar
Hoover, B.R. et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron68, 1067–1081 (2010). CASPubMedPubMed Central Google Scholar
Zempel, H., Thies, E., Mandelkow, E. & Mandelkow, E.M. Aβ oligomers cause localized Ca2+ elevation, missorting of endogenous tau into dendrites, tau phosphorylation and destruction of microtubules and spines. J. Neurosci.30, 11938–11950 (2010). CASPubMedPubMed Central Google Scholar
Miller, E.C. et al. Tau phosphorylation and tau mislocalization mediate soluble Aβ oligomer-induced AMPA glutamate receptor signaling deficits. Eur. J. Neurosci.39, 1214–1224 (2014). PubMedPubMed Central Google Scholar
Fasulo, L. et al. The neuronal microtubule-associated protein tau is a substrate for caspase-3 and an effector of apoptosis. J. Neurochem.75, 624–633 (2000). CASPubMed Google Scholar
Cotman, C.W., Poon, W.W., Rissman, R.A. & Blurton-Jones, M. The role of caspase cleavage of tau in Alzheimer disease neuropathology. J. Neuropathol. Exp. Neurol.64, 104–112 (2005). CASPubMed Google Scholar
Bergeron, L. et al. Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev.12, 1304–1314 (1998). CASPubMedPubMed Central Google Scholar
Isaac, J.T., Nicoll, R.A. & Malenka, R.C. Evidence for silent synapses: implications for the expression of LTP. Neuron15, 427–434 (1995). CASPubMed Google Scholar
Liao, D., Hessler, N.A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature375, 400–404 (1995). CASPubMed Google Scholar
Shalini, S., Dorstyn, L., Dawar, S. & Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ.22, 526–539 (2015). CASPubMed Google Scholar
Kumar, S., Kinoshita, M., Noda, M., Copeland, N.G. & Jenkins, N.A. Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1β-converting enzyme. Genes Dev.8, 1613–1626 (1994). CASPubMed Google Scholar
Tiwari, M. et al. A non-apoptotic role for CASP2/caspase-2: modulation of autophagy. Autophagy10, 1054–1070 (2014). CASPubMedPubMed Central Google Scholar
Shalini, S. et al. Caspase-2 protects against oxidative stress in vivo. Oncogene34, 4995–5002 (2015). CASPubMed Google Scholar
Upton, J.P. et al. IRE-1α cleaves select microRNAs during ER stress to de-repress translation of pro-apoptotic caspase-2. Science338, 818–822 (2012). CASPubMedPubMed Central Google Scholar
Pozueta, J. et al. Caspase-2 is required for dendritic spine and behavioral alterations in J20 APP transgenic mice. Nat. Commun.4, 1939 (2013). PubMedPubMed Central Google Scholar
Carroll, J.B. et al. Mice lacking caspase-2 are protected from behavioral changes, but not pathology, in the YAC128 model of Huntington disease. Mol. Neurodegener.6, 59 (2011). PubMedPubMed Central Google Scholar
Lee, S. & Shea, T.B. Caspase-mediated truncation of tau potentiates aggregation. Int. J. Alzheimers Dis.2012, 731063 (2012). PubMedPubMed Central Google Scholar
Wang, Y., Garg, S., Mandelkow, E.M. & Mandelkow, E. Proteolytic processing of tau. Biochem. Soc. Trans.38, 955–961 (2010). CASPubMed Google Scholar
Dolan, P.J. & Johnson, G.V. A caspase-cleaved form of tau is preferentially degraded through the autophagy pathway. J. Biol. Chem.285, 21978–21987 (2010). CASPubMedPubMed Central Google Scholar
Gamblin, T.C. et al. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. Proc. Natl. Acad. Sci. USA100, 10032–10037 (2003). CASPubMed Google Scholar
Spires-Jones, T.L., Stoothoff, W.H., de Calignon, A., Jones, P.B. & Hyman, B.T. Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci.32, 150–159 (2009). CASPubMed Google Scholar
Zhang, Z. et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer's disease. Nat. Med.20, 1254–1262 (2014). CASPubMedPubMed Central Google Scholar
Abraha, A. et al. C-terminal inhibition of tau assembly in vitro and in Alzheimer's disease. J. Cell Sci.113, 3737–3745 (2000). CASPubMed Google Scholar
Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron53, 337–351 (2007). CASPubMed Google Scholar
Davies, P. Characterization and use of monoclonal antibodies to tau and paired-helical-filament tau. Methods Mol. Med.32, 361–373 (2000). CASPubMed Google Scholar
Hunsberger, H.C. et al. Effect size of memory deficits in mice with adult-onset P301L tau expression. Behav. Brain Res.272, 181–195 (2014). CASPubMedPubMed Central Google Scholar
Westerman, M.A. et al. The relationship between Aβ and memory in the Tg2576 mouse model of Alzheimer's disease. J. Neurosci.22, 1858–1867 (2002). CASPubMedPubMed Central Google Scholar
Wolfer, D.P., Madani, R., Valenti, P. & Lipp, H.P. Extended analysis of path data from mutant mice using the public domain software Wintrack. Physiol. Behav.73, 745–753 (2001). CASPubMed Google Scholar
Lesné, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature440, 352–357 (2006). PubMed Google Scholar
Wang, X. et al. Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down's syndrome. Nat. Med.19, 473–480 (2013). CASPubMedPubMed Central Google Scholar