Rinella, M.E. Will the increased prevalence of nonalcoholic steatohepatitis (NASH) in the age of better hepatitis C virus therapy make NASH the deadlier disease? Hepatology54, 1118–1120 (2011). ArticlePubMed Google Scholar
Rahman, K. et al. Loss of junctional adhesion molecule A promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology151, 733–746 (2016). ArticleCASPubMed Google Scholar
Mehal, W.Z. The Gordian Knot of dysbiosis, obesity and NAFLD. Nat. Rev. Gastroenterol. Hepatol.10, 637–644 (2013). ArticlePubMed Google Scholar
Zhu, L. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology57, 601–609 (2013). ArticleCASPubMed Google Scholar
Miele, L. et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology49, 1877–1887 (2009). ArticleCASPubMed Google Scholar
Vespasiani-Gentilucci, U. et al. Hepatic Toll-like receptor 4 expression is associated with portal inflammation and fibrosis in patients with NAFLD. Liver Int.35, 569–581 (2015). ArticleCASPubMed Google Scholar
Kiziltas, S. et al. TLR4 gene polymorphism in patients with nonalcoholic fatty liver disease in comparison to healthy controls. Metab. Syndr. Relat. Disord.12, 165–170 (2014). ArticleCASPubMed Google Scholar
Mills, K.H. TLR-dependent T cell activation in autoimmunity. Nat. Rev. Immunol.11, 807–822 (2011). ArticleCASPubMed Google Scholar
Harley, I.T. et al. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology59, 1830–1839 (2014). ArticleCASPubMed Google Scholar
Rau, M. et al. Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/resting regulatory T cell ratio in peripheral blood and in the liver. J. Immunol.196, 97–105 (2016). ArticleCASPubMed Google Scholar
Hebbard, L. & George, J. Animal models of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol.8, 35–44 (2011). ArticleCASPubMed Google Scholar
Gordon, C.J. Temperature Regulation in Laboratory Rodents (Cambridge University Press, 1993).
Maloney, S.K., Fuller, A., Mitchell, D., Gordon, C. & Overton, J.M. Translating animal model research: does it matter that our rodents are cold? Physiology (Bethesda)29, 413–420 (2014). CAS Google Scholar
Stemmer, K. et al. Thermoneutral housing is a critical factor for immune function and diet-induced obesity in C57BL/6 nude mice. Int. J. Obes. (Lond)39, 791–797 (2015). ArticleCAS Google Scholar
Bowers, S.L., Bilbo, S.D., Dhabhar, F.S. & Nelson, R.J. Stressor-specific alterations in corticosterone and immune responses in mice. Brain Behav. Immun.22, 105–113 (2008). ArticleCASPubMed Google Scholar
Giles, D.A. et al. Modulation of ambient temperature promotes inflammation and initiates atherosclerosis in wild type C57BL/6 mice. Mol. Metab.5, 1121–1130 (2016). ArticleCASPubMedPubMed Central Google Scholar
Rudaya, A.Y., Steiner, A.A., Robbins, J.R., Dragic, A.S. & Romanovsky, A.A. Thermoregulatory responses to lipopolysaccharide in the mouse: dependence on the dose and ambient temperature. Am. J. Physiol. Regul. Integr. Comp. Physiol.289, R1244–R1252 (2005). ArticleCASPubMed Google Scholar
Moragues, V. & Pinkerton, H. Variation in morbidity and mortality of murine typhus infection in mice with changes in the environmental temperature. J. Exp. Med.79, 41–43 (1944). ArticleCASPubMedPubMed Central Google Scholar
Foxman, E.F. et al. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proc. Natl. Acad. Sci. USA112, 827–832 (2015). ArticleCASPubMedPubMed Central Google Scholar
Eng, J.W. et al. Housing temperature–induced stress drives therapeutic resistance in murine tumour models through β2-adrenergic receptor activation. Nat. Commun.6, 6426 (2015). ArticleCASPubMed Google Scholar
Tian, X.Y. et al. Thermoneutral housing accelerates metabolic inflammation to potentiate atherosclerosis but not insulin resistance. Cell Metab.23, 165–178 (2016). ArticleCASPubMed Google Scholar
Athyros, V.G. et al. Cardiovascular risk across the histological spectrum and the clinical manifestations of non-alcoholic fatty liver disease: an update. World J. Gastroenterol.21, 6820–6834 (2015). ArticlePubMedPubMed Central Google Scholar
Kox, M. et al. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans. Proc. Natl. Acad. Sci. USA111, 7379–7384 (2014). ArticleCASPubMedPubMed Central Google Scholar
Hanssen, M.J. et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat. Med.21, 863–865 (2015). ArticleCASPubMed Google Scholar
Overton, J.M. Phenotyping small animals as models for the human metabolic syndrome: thermoneutrality matters. Int. J. Obes. (Lond)34 (Suppl. 2), S53–S58 (2010). Article Google Scholar
Swoap, S.J. et al. Vagal tone dominates autonomic control of mouse heart rate at thermoneutrality. Am. J. Physiol. Heart Circ. Physiol.294, H1581–H1588 (2008). ArticleCASPubMed Google Scholar
Emre, Y. & Nübel, T. Uncoupling protein UCP2: when mitochondrial activity meets immunity. FEBS Lett.584, 1437–1442 (2010). ArticleCASPubMed Google Scholar
Bhattacharyya, S., Brown, D.E., Brewer, J.A., Vogt, S.K. & Muglia, L.J. Macrophage glucocorticoid receptors regulate Toll-like receptor 4–mediated inflammatory responses by selective inhibition of p38 MAP kinase. Blood109, 4313–4319 (2007). ArticleCASPubMedPubMed Central Google Scholar
Izeboud, C.A., Mocking, J.A., Monshouwer, M., van Miert, A.S. & Witkamp, R.F. Participation of β-adrenergic receptors on macrophages in modulation of LPS-induced cytokine release. J. Recept. Signal Transduct. Res.19, 191–202 (1999). ArticleCASPubMed Google Scholar
Emre, Y. et al. Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages. Biochem. J.402, 271–278 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wahle, M. et al. β2-adrenergic receptors mediate the differential effects of catecholamines on cytokine production of PBMC. J. Interferon Cytokine Res.25, 384–394 (2005). ArticleCASPubMed Google Scholar
Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest.112, 1821–1830 (2003). ArticleCASPubMedPubMed Central Google Scholar
Brunt, E.M., Kleiner, D.E., Wilson, L.A., Belt, P. & Neuschwander-Tetri, B.A. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology53, 810–820 (2011). ArticleCASPubMed Google Scholar
Nagaya, T. et al. Down-regulation of SREBP-1c is associated with the development of burned-out NASH. J. Hepatol.53, 724–731 (2010). ArticleCASPubMed Google Scholar
Rizki, G. et al. Mice fed a lipogenic methionine-choline-deficient diet develop hypermetabolism coincident with hepatic suppression of SCD-1. J. Lipid Res.47, 2280–2290 (2006). ArticleCASPubMed Google Scholar
Teufel, A. et al. Comparison of gene expression patterns between mouse models of nonalcoholic fatty liver disease and liver tissues from patients. Gastroenterology151, 513–525 (2016). ArticleCASPubMed Google Scholar
Brown, M.P. et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. USA97, 262–267 (2000). ArticleCASPubMedPubMed Central Google Scholar
Alexander, J., Chang, G.Q., Dourmashkin, J.T. & Leibowitz, S.F. Distinct phenotypes of obesity-prone AKR/J, DBA2J and C57BL/6J mice compared to control strains. Int. J. Obes. (Lond)30, 50–59 (2006). ArticleCAS Google Scholar
Li, L., Chen, L. & Hu, L. Nuclear factor high-mobility group box1 mediating the activation of Toll-like receptor 4 signaling in hepatocytes in the early stage of non-alcoholic fatty liver disease in mice. J. Clin. Exp. Hepatol.1, 123–124 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wieckowska, A. et al. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am. J. Gastroenterol.103, 1372–1379 (2008). ArticleCASPubMed Google Scholar
Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med.17, 179–188 (2011). ArticleCASPubMedPubMed Central Google Scholar
Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med.201, 233–240 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ramesh, R. et al. Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. J. Exp. Med.211, 89–104 (2014). ArticleCASPubMedPubMed Central Google Scholar
Sano, T. et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell163, 381–393 (2015). ArticleCASPubMedPubMed Central Google Scholar
Pan, J.J. & Fallon, M.B. Gender and racial differences in nonalcoholic fatty liver disease. World J. Hepatol.6, 274–283 (2014). ArticlePubMedPubMed Central Google Scholar
Kanuri, G. & Bergheim, I. In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). Int. J. Mol. Sci.14, 11963–11980 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bäckhed, F., Manchester, J.K., Semenkovich, C.F. & Gordon, J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA104, 979–984 (2007). ArticleCASPubMedPubMed Central Google Scholar
Puddu, A., Sanguineti, R., Montecucco, F. & Viviani, G.L. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm.2014, 162021 (2014). PubMedPubMed Central Google Scholar
Alisi, A. et al. Plasma high mobility group box 1 protein reflects fibrosis in pediatric nonalcoholic fatty liver disease. Expert Rev. Mol. Diagn.14, 763–771 (2014). ArticleCASPubMed Google Scholar
do Nascimento, J.H., Epifanio, M., Soder, R.B. & Baldisserotto, M. MRI-diagnosed nonalcoholic fatty liver disease is correlated to insulin resistance in adolescents. Acad. Radiol.20, 1436–1442 (2013). ArticlePubMed Google Scholar
Sorrentino, P. et al. Predicting fibrosis worsening in obese patients with NASH through parenchymal fibronectin, HOMA-IR, and hypertension. Am. J. Gastroenterol.105, 336–344 (2010). ArticleCASPubMed Google Scholar
Meng, F. et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology143, 765–776 (2012). ArticleCASPubMed Google Scholar
Giles, D.A., Moreno-Fernandez, M.E. & Divanovic, S. IL-17 axis driven inflammation in non-alcoholic fatty liver disease progression. Curr. Drug Targets16, 1315–1323 (2015). ArticleCASPubMedPubMed Central Google Scholar
McKee, C. et al. Propranolol, a β-adrenoceptor antagonist, worsens liver injury in a model of non-alcoholic steatohepatitis. Biochem. Biophys. Res. Commun.437, 597–602 (2013). ArticleCASPubMedPubMed Central Google Scholar
McAlees, J.W. et al. Distinct Tlr4-expressing cell compartments control neutrophilic and eosinophilic airway inflammation. Mucosal Immunol.8, 863–873 (2015). ArticleCASPubMed Google Scholar
Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol.177, 566–573 (2006). ArticleCASPubMed Google Scholar
Giles, D.A. et al. Regulation of inflammation by IL-17A and IL-17F modulates non-alcoholic fatty liver disease pathogenesis. PLoS One11, e0149783 (2016). ArticleCASPubMedPubMed Central Google Scholar
Chen, J., Bardes, E.E., Aronow, B.J. & Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res.37, W305–W311 (2009). ArticleCASPubMedPubMed Central Google Scholar
Divanovic, S., Trompette, A., Ashworth, J.I., Rao, M.B. & Karp, C.L. Therapeutic enhancement of protective immunity during experimental leishmaniasis. PLoS Negl. Trop. Dis.5, e1316 (2011). ArticleCASPubMedPubMed Central Google Scholar
Finkelman, F., Morris, S., Orekhova, T. & Sehy, D. The in vivo cytokine capture assay for measurement of cytokine production in the mouse. Curr. Protoc. Immunol.54, 6.28 (2003). Google Scholar
Divanovic, S. et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat. Immunol.6, 571–578 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wu, D. et al. Interleukin-13 (IL-13)/IL-13 receptor alpha1 (IL-13Rα1) signaling regulates intestinal epithelial cystic fibrosis transmembrane conductance regulator channel-dependent Cl− secretion. J. Biol. Chem.286, 13357–13369 (2011). ArticleCASPubMedPubMed Central Google Scholar
Schloss, P.D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol.75, 7537–7541 (2009). ArticleCASPubMedPubMed Central Google Scholar