- Golozoubova, V. et al. Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J. 15, 2048–2050 (2001).
Article CAS PubMed Google Scholar
- Nedergaard, J. et al. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim. Biophys. Acta 1504, 82–106 (2001).
Article CAS PubMed Google Scholar
- Kajimura, S., Spiegelman, B.M. & Seale, P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22, 546–559 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Shabalina, I.G. et al. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 5, 1196–1203 (2013).
Article CAS PubMed Google Scholar
- Okamatsu-Ogura, Y. et al. Thermogenic ability of uncoupling protein 1 in beige adipocytes in mice. PLoS One 8, e84229 (2013).
Article PubMed PubMed Central CAS Google Scholar
- Cinti, S. The Adipose Organ (Editrice Kurtis, 1999).
- Petrovic, N. et al. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285, 7153–7164 (2010).
Article CAS PubMed Google Scholar
- Nedergaard, J. & Cannon, B. UCP1 mRNA does not produce heat. Biochim. Biophys. Acta 1831, 943–949 (2013).
Article CAS PubMed Google Scholar
- Xue, B. et al. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J. Lipid Res. 48, 41–51 (2007).
Article CAS PubMed Google Scholar
- Guerra, C., Koza, R.A., Yamashita, H., Walsh, K. & Kozak, L.P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest. 102, 412–420 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 121, 96–105 (2011).
Article CAS PubMed Google Scholar
- Shinoda, K. et al. Phosphoproteomics identifies CK2 as a negative regulator of beige adipocyte thermogenesis and energy expenditure. Cell Metab. 22, 997–1008 (2015).
Article CAS PubMed PubMed Central Google Scholar
- McDonald, M.E. et al. Myocardin-related transcription factor A regulates conversion of progenitors to beige adipocytes. Cell 160, 105–118 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Vegiopoulos, A. et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328, 1158–1161 (2010).
Article CAS PubMed Google Scholar
- Cohen, P. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304–316 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Ohno, H., Shinoda, K., Ohyama, K., Sharp, L.Z. & Kajimura, S. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504, 163–167 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Ukropec, J., Anunciado, R.P., Ravussin, Y., Hulver, M.W. & Kozak, L.P. UCP1-independent thermogenesis in white adipose tissue of cold-acclimated _Ucp1_−/− mice. J. Biol. Chem. 281, 31894–31908 (2006).
CAS PubMed Google Scholar
- Granneman, J.G., Burnazi, M., Zhu, Z. & Schwamb, L.A. White adipose tissue contributes to UCP1-independent thermogenesis. Am. J. Physiol. Endocrinol. Metab. 285, E1230–E1236 (2003).
Article CAS PubMed Google Scholar
- Rowland, L.A., Bal, N.C., Kozak, L.P. & Periasamy, M. Uncoupling protein 1 and sarcolipin are required to maintain optimal thermogenesis, and loss of both systems compromises survival of mice under cold stress. J. Biol. Chem. 290, 12282–12289 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Bal, N.C. et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med. 18, 1575–1579 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Enerbäck, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).
Article PubMed Google Scholar
- Tripathi, S. et al. Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe 18, 723–735 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Fujii, J. et al. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253, 448–451 (1991).
Article CAS PubMed Google Scholar
- Quane, K.A. et al. Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat. Genet. 5, 51–55 (1993).
Article CAS PubMed Google Scholar
- Shinoda, K. et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat. Med. 21, 389–394 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Collins, S. β-adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front. Endocrinol. (Lausanne) 2, 102 (2012).
Google Scholar
- Fedorenko, A., Lishko, P.V. & Kirichok, Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151, 400–413 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Bertholet, A.M. et al. Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab. 25, 811–822 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Lee, S.C., Nuccitelli, R. & Pappone, P.A. Adrenergically activated Ca2+ increases in brown fat cells: effects of Ca2+, K+, and K channel block. Am. J. Physiol. 264, C217–C228 (1993).
Article CAS PubMed Google Scholar
- Prestle, J. et al. Overexpression of FK506-binding protein FKBP12.6 in cardiomyocytes reduces ryanodine receptor–mediated Ca2+ leak from the sarcoplasmic reticulum and increases contractility. Circ. Res. 88, 188–194 (2001).
Article CAS PubMed Google Scholar
- Gómez, A.M. et al. FKBP12.6 overexpression decreases Ca2+ spark amplitude but enhances [Ca2+]i transient in rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 287, H1987–H1993 (2004).
Article PubMed CAS Google Scholar
- Loughrey, C.M. et al. Over-expression of FK506-binding protein FKBP12.6 alters excitation–contraction coupling in adult rabbit cardiomyocytes. J. Physiol. (Lond.) 556, 919–934 (2004).
Article CAS Google Scholar
- Wehrens, X.H. et al. Protection from cardiac arrhythmia through ryanodine receptor–stabilizing protein calstabin2. Science 304, 292–296 (2004).
Article CAS PubMed Google Scholar
- Santulli, G. et al. Calcium release channel RyR2 regulates insulin release and glucose homeostasis. J. Clin. Invest. 125, 1968–1978 (2015).
Article PubMed PubMed Central Google Scholar
- Berg, F., Gustafson, U. & Andersson, L. The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: a genetic explanation for poor thermoregulation in piglets. PLoS Genet. 2, e129 (2006).
Article PubMed PubMed Central CAS Google Scholar
- Denton, R.M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta 1787, 1309–1316 (2009).
Article CAS PubMed Google Scholar
- Marx, S.O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).
Article CAS PubMed Google Scholar
- Kramarova, T.V. et al. Mitochondrial ATP synthase levels in brown adipose tissue are governed by the c-Fo subunit P1 isoform. FASEB J. 22, 55–63 (2008).
Article CAS PubMed Google Scholar
- Block, B.A. Thermogenesis in muscle. Annu. Rev. Physiol. 56, 535–577 (1994).
Article CAS PubMed Google Scholar
- Fu, S. et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473, 528–531 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Park, S.W., Zhou, Y., Lee, J., Lee, J. & Ozcan, U. Sarco(endo)plasmic reticulum Ca2+-ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeostasis in obesity. Proc. Natl. Acad. Sci. USA 107, 19320–19325 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Tubbs, E. et al. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63, 3279–3294 (2014).
Article CAS PubMed Google Scholar
- Arruda, A.P. et al. Chronic enrichment of hepatic endoplasmic reticulum–mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20, 1427–1435 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Yoneshiro, T. et al. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring) 19, 1755–1760 (2011).
Article Google Scholar
- Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Tiso, N. et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum. Mol. Genet. 10, 189–194 (2001).
Article CAS PubMed Google Scholar
- Marks, A.R., Priori, S., Memmi, M., Kontula, K. & Laitinen, P.J. Involvement of the cardiac ryanodine receptor/calcium release channel in catecholaminergic polymorphic ventricular tachycardia. J. Cell. Physiol. 190, 1–6 (2002).
Article CAS PubMed Google Scholar
- Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Feketa, V.V., Balasubramanian, A., Flores, C.M., Player, M.R. & Marrelli, S.P. Shivering and tachycardic responses to external cooling in mice are substantially suppressed by TRPV1 activation but not by TRPM8 inhibition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R1040–R1050 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Soga, T. et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J. Biol. Chem. 281, 16768–16776 (2006).
Article CAS PubMed Google Scholar
- Soga, T. et al. Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal. Chem. 81, 6165–6174 (2009).
Article CAS PubMed Google Scholar
- Soga, T. & Heiger, D.N. Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal. Chem. 72, 1236–1241 (2000).
Article CAS PubMed Google Scholar